2018.8.1 《剑指Offer》从零单刷个人笔记整理(66题全)目录传送门
思路:首先我们先明确最小的数必然出现在旋转的分界点上。二分查找o(logn),注意:1.相等元素,2.子序列递增有序/仍然为旋转数组,3.用子序列中点与尾点比较(比与头点)更容易实现。
当然,也可以从尾到头一个个做一个复杂度o(n)的遍历~当然那也太没有追求了哈哈
题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
Java实现:
/**
*
* @author ChopinXBP
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。
* 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
* NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
*
* 首先我们先明确最小的数必然出现在旋转的分界点上。
* 思路:二分法,注意1.相等元素,2.子序列递增有序/仍然为旋转数组,3.用子序列中点与尾点比较(比与头点)更容易实现
*
*/
public class minNumberInRotateArray_6 {
private static int[] test = {4,5,6,7,9,1,2,3,4,5};
public static void main(String[] args) {
// TODO Auto-generated method stub
int min = Solution(test);
System.out.println(min);
}
public static int Solution(int[] array) {
if (array.length == 0)
return 0;
int flag = (array.length - 1) / 2; // 标记中间元素
int head = 0;
int tail = array.length - 1;
while (head != tail) {
//中点在分隔点前
if(array[flag] > array[tail]){
head = flag + 1;
}
//中点在分隔点后
else if(array[flag] <= array[tail]){
//子序列非递减有序
if(array[head] <= array[flag]){
flag = head;
break;
}
//子序列仍然为旋转数组
else{
tail = flag;
}
}
flag = (head + tail) / 2;
}
return array[flag];
}
}
C++解答示例(有个回答者特别详细的解析):
剑指Offer中有这道题目的分析。这是一道二分查找的变形的题目。
旋转之后的数组实际上可以划分成两个有序的子数组:前面子数组的大小都大于后面子数组中的元素
注意到实际上最小的元素就是两个子数组的分界线。本题目给出的数组一定程度上是排序的,因此我们试着用二分查找法寻找这个最小的元素。
思路:
(1)我们用两个指针left,right分别指向数组的第一个元素和最后一个元素。按照题目的旋转的规则,第一个元素应该是大于最后一个元素的(没有重复的元素)。
但是如果不是旋转,第一个元素肯定小于最后一个元素。
(2)找到数组的中间元素。
中间元素大于第一个元素,则中间元素位于前面的递增子数组,此时最小元素位于中间元素的后面。我们可以让第一个指针left指向中间元素。
移动之后,第一个指针仍然位于前面的递增数组中。
中间元素小于第一个元素,则中间元素位于后面的递增子数组,此时最小元素位于中间元素的前面。我们可以让第二个指针right指向中间元素。
移动之后,第二个指针仍然位于后面的递增数组中。
这样可以缩小寻找的范围。
(3)按照以上思路,第一个指针left总是指向前面递增数组的元素,第二个指针right总是指向后面递增的数组元素。
最终第一个指针将指向前面数组的最后一个元素,第二个指针指向后面数组中的第一个元素。
也就是说他们将指向两个相邻的元素,而第二个指针指向的刚好是最小的元素,这就是循环的结束条件。
到目前为止以上思路很耗的解决了没有重复数字的情况,这一道题目添加上了这一要求,有了重复数字。
因此这一道题目比上一道题目多了些特殊情况:
我们看一组例子:{1,0,1,1,1} 和 {1,1, 1,0,1} 都可以看成是递增排序数组{0,1,1,1,1}的旋转。
这种情况下我们无法继续用上一道题目的解法,去解决这道题目。因为在这两个数组中,第一个数字,最后一个数字,中间数字都是1。
第一种情况下,中间数字位于后面的子数组,第二种情况,中间数字位于前面的子数组。
因此当两个指针指向的数字和中间数字相同的时候,我们无法确定中间数字1是属于前面的子数组还是属于后面的子数组。
也就无法移动指针来缩小查找的范围。
#include <iostream>
#include <vector>
#include <string>
#include <stack>
#include <algorithm>
using namespace std;
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
int size = rotateArray.size();
if(size == 0){
return 0;
}//if
int left = 0,right = size - 1;
int mid = 0;
// rotateArray[left] >= rotateArray[right] 确保旋转
while(rotateArray[left] >= rotateArray[right]){
// 分界点
if(right - left == 1){
mid = right;
break;
}//if
mid = left + (right - left) / 2;
// rotateArray[left] rotateArray[right] rotateArray[mid]三者相等
// 无法确定中间元素是属于前面还是后面的递增子数组
// 只能顺序查找
if(rotateArray[left] == rotateArray[right] && rotateArray[left] == rotateArray[mid]){
return MinOrder(rotateArray,left,right);
}//if
// 中间元素位于前面的递增子数组
// 此时最小元素位于中间元素的后面
if(rotateArray[mid] >= rotateArray[left]){
left = mid;
}//if
// 中间元素位于后面的递增子数组
// 此时最小元素位于中间元素的前面
else{
right = mid;
}//else
}//while
return rotateArray[mid];
}
private:
// 顺序寻找最小值
int MinOrder(vector<int> &num,int left,int right){
int result = num[left];
for(int i = left + 1;i < right;++i){
if(num[i] < result){
result = num[i];
}//if
}//for
return result;
}
};
int main(){
Solution s;
//vector<int> num = {0,1,2,3,4,5};
//vector<int> num = {4,5,6,7,1,2,3};
vector<int> num = {2,2,2,2,1,2};
int result = s.minNumberInRotateArray(num);
// 输出
cout<<result<<endl;
return 0;
}
#Coding一小时,Copying一秒钟。留个言点个赞呗,谢谢你#