基于GAN的图像生成(StyleGAN2)

测试链接:GitHub - NVlabs/stylegan2-ada-pytorch: StyleGAN2-ADA - Official PyTorch implementation

 作者说了这个项目在Windows和Linux上都可以跑,但是我Windows遇到一个错误根本解决不了,只能在Linux上跑,如果你在Windows上遇到了很难解决的问题并且花了一段时间了,那千万不要头铁继续了,就到Linux上跑下,没有Linux就把电脑划出一点空间装双系统,环境配置好了,在Linux上跑基本没有什么问题,下面开始

0.环境

Ubuntu20,python3.8.12,cuda 11.1.1,一开始torch是1.9.0的时候报错,推荐torch1.8.0

1.数据准备

我得数据是人脸数据,1024*1024

 使用根目录下的dataset_tool.py打包训练数据

命令行:

python ./dataset_tool.py --source=./datasets/Face --dest=./datasets/Face.zip

--souce参数给数据根目录,--dest参数给压缩数据存放位置

2.训练

python train.py --outdir=./runs/ --data=./datasets/face_ori.zip --gpus=1 --cfg=paper1024 --mirror=1 --resume=ffhq1024 --snap=10 --batch 4 --workers 1

其实数据准备好基本就可以开始训练了,训练的速度和效果看官网就知道了,主要是显卡要多,不然特别废时间,我只有一张显卡,测试了1024大小的图像,其它的大小会报错,应该是参数没有对应修改,大家自己探索吧。

3.预测

python generate.py --outdir=result/ --trunc=1 --seeds=85,297,849 --network=./runs/00002-face_ori-mirror-paper1024-batch2-resumeffhq1024/network-snapshot-000600.pkl

选择一个训练好的模型,seeds是随机给的,给多少个就会生成多少图像,这里有三个,会生成三张图,具体含义等我仔细看了代码再补,或者有谁知道,评论区说下

跑的次数太少了,有很明显的瑕疵,最后一张很完美,我配置太差了,这个网络玩不来 ,大家自己慢慢探索把

围绕 GAN 的研究 的研究 可以分为两条主线,一是 可以分为两条主线,一是 可以分为两条主线,一是 理论主线, 理论主线, 从数学理论上研究如何解决 从数学理论上研究如何解决 从数学理论上研究如何解决 GAN 的不稳定性和模式崩塌问题 的不稳定性和模式崩塌问题 的不稳定性和模式崩塌问题 ,或者从信息理论和基于能量的模型等不同角度重新阐述它。 或者从信息理论和基于能量的模型等不同角度重新阐述它。 或者从信息理论和基于能量的模型等不同角度重新阐述它。 或者从信息理论和基于能量的模型等不同角度重新阐述它。 或者从信息理论和基于能量的模型等不同角度重新阐述它。 或者从信息理论和基于能量的模型等不同角度重新阐述它。 或者从信息理论和基于能量的模型等不同角度重新阐述它。 或者从信息理论和基于能量的模型等不同角度重新阐述它。 二 是应用主线, 致力于 将 GAN 应用于计算机视觉领域 应用于计算机视觉领域 应用于计算机视觉领域 、利用 GAN 进行 图像生成 (指定图像合成、 (指定图像合成、 (指定图像合成、 文本到图像,、视频)以及 文本到图像,、视频)以及 文本到图像,、视频)以及 文本到图像,、视频)以及 文本到图像,、视频)以及 文本到图像,、视频)以及 将 GAN 应用于 应用于 NLP 或其它领域 其它领域 。利用 GAN 进行 图像生 成和转换 是当前 研究最多的,并且该领域已经证明了 研究最多的,并且该领域已经证明了 研究最多的,并且该领域已经证明了 研究最多的,并且该领域已经证明了 研究最多的,并且该领域已经证明了 研究最多的,并且该领域已经证明了 GAN 在图像合成中 在图像合成中 的巨大潜力。
评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如雾如电

随缘

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值