智能优化算法及优化案例目录

该专栏专注于智能优化算法的理论与应用,涵盖遗传算法、蚁群算法、粒子群优化等,并通过车辆路径问题、生产调度、公交排班等实际案例进行解析。内容包括Python和Matlab的编程实现,以及行业落地应用,如供应链预测和多目标约束问题。同时,涉及数学求解器Cplex的案例和优秀硕士论文的复现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在未来几个月时间里,将会逐步针对先前整理的博客文章进行分类归纳,并建立成为智能优化算法及案例库的学习专栏区。内容包含对行业的理解,以及相关领域下的理论优化算法,并会通过具体的优化案例来阐述算法的相关应用。其中优化案例将会重点从车辆路径问题、生产调度问题、排班问题(如公交车的运营)、二维路径问题、三维路径问题如避障等,编程实现的语言基本为Python或者Matlab。以下问题都会讲解到。


如下为整理的智能优化算法及优化案例查阅目录

在讲解本专栏之前,先整理了下智能优化算法在实际行业中的具体应用,建议可以优先阅读行业落地应用讲解,里面会涉及部分机器学习的内容,可移步查阅机器学习方面相关的资料。

0、行业落地应用讲解

智能供应链预测的应用

...(待补充)

1、算法概述

        1.1    遗传算法

        1.2    蚁群算法

        1.3    粒子群算法

        1.4    模拟退火算法

        1.5    多目标非支配排序遗传算法NSGA-II

        1.6    多目标非支配排序算法NSGA-II算法改进

        1.7、Dijkstra算法

        1.8、A* 算法

        1.9 、RRT算法

        1.10、强化学习dqn、ddqn算法  

        1.11、...(待补充)

2、VRP路径规划问题

2.1    TSP问题

         2.1.1、遗传算法求解TSP问题(本科生,入门难度,2颗星)

         2.1.2、蚁群算法求解TSP问题(本科生,入门难度,2颗星)

         2.1.3、模拟退火算法求解TSP问题(本科生,入门难度,2颗星)

2.2    CVRP问题

        2.2.1、遗传算法求解CVRP问题(本科生,中等难度,3-4颗星)

2.3    VRPTW问题

        2.3.1、遗传算法求解VRPTW(研究生,中等难度,5-6颗星)

        2.3.2、蚁群算法求解VRPTW(研究生,中等难度,5-6颗星)

2.4    VRPPD问题(研究生,中等难度,5-6颗星),内含一些变种问题,可能会演变的稍复杂。

2.5    多约束的VRP问题

        2.5.1、多中心VRP问题(研究生中高等难度,7-8颗星)

        2.5.2、多层网络的VRP问题(研究生高难度,9-10颗星)

        2.5.3、多中心多车型的VRP问题(研究生高难度,8-9颗星)

2.6    动态VRP问题(暂不做讲解)(研究生高难度,7-10颗星)

2.7    多目标约束问题(研究生中高等难度,7-8颗星)

2.8    多式联运问题(本科生、研究生,低中高等难度,4-8颗星)看问题的变化情况

2.9    AGV路径规划问题(本科生、研究生中等难度,4-7颗星)

2.10    二维空间路径规划问题

        2.10.1、Search-based Planning

                Dijkstra's、A*、Bidirectional A*、BFS、DFS...

        2.10.2、Sampling-based Planning
                RRT、RRT*、FMT*、BIT

2.11   三维空间路径规划问题

        2.11.1、Search-based Planning

                Dijkstra's、A*、Bidirectional A*、BFS、DFS...

        2.11.2、Sampling-based Planning
                RRT、RRT*、FMT*、BIT

2.12   选址问题

        2.12.1、基础选址问题(本科生中等、研究生初等难度,4-5颗星)

        2.12.2、选址+定容问题(研究生中高等难度,7-8颗星)

        2.12.3、选址路径一体问题(研究生高等难度,9-10颗星)

3、生产车间调度优化问题

        3.1    混合流水车间问题(遗传算法)(研究生中等难度,6-8颗星)

        3.2    订单拆分调度问题(NSGA_II)(研究生中高等难度,6-9颗星)

4、公交车的调度排班优化问题

5、优秀硕士论文复现

        5.1、生鲜冷链带时间窗的路径规划问题(目标函数包括有固定成本、运输成本、制冷成本、货损成本等几部分构成)。

        5.2、双目标带时间窗的路径规划问题(双目标分别为企业综合成本、客户服务满意度,企业综合成本可扩展)。

        5.3、多式联运问题

        5.4、多配送中心多车型的路径规划问题

        5.5、选址定容问题

        5.6、选址路径规划问题

        5.7、RGV智能调度问题

        5.8、公交车调度问题

        5.9、航班摆渡车辆调度问题

        5.10、多机器人仓库调度类问题

6、数学求解器Cplex求解案例

        6.1、配送中心选址建模

        6.2、车辆路径问题建模

        6.3、基于生产排程优化建模

        6.4、基于模式选择、提前期和车辆配送中心容量的汽车供应链网络设计

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

且行且安~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值