贝叶斯公式 先验概率 后验概率(详细)

本文介绍了贝叶斯公式在机器学习中的应用,通过两个实例解释了先验概率和后验概率的概念。公式P(A|B)=P(B|A)∗P(A)/P(B)用于计算在给定条件B下的事件A的概率。文章还讨论了全概率公式,并总结了先验概率与后验概率之间的关系。
摘要由CSDN通过智能技术生成

贝叶斯公式

贝叶斯公式是机器学习中的基础公式,也是概率统计里的常用公式,贝叶斯公式常用于监督学习算法中的生成(式)模型(Generative Model),想要对机器学习算法建立体系化的知识结构,对生成模型的理解至关重要,本篇只简述贝叶斯公式。并对先验概率和后验概率的知识点进行整理,以便随时查阅。首先给出两个例子
第一个例子。一所学校里面有 60% 的男生,40% 的女生。男生总是穿长裤,女生则一半穿长裤一半穿裙子。假设你走在校园中,迎面走来一个穿长裤的学生(很不幸的是你高度近似,你只看得见他(她)穿的是否长裤,而无法确定他(她)的性别),你能够推断出他(她)是男生的概率是多大吗?
第二个例子。两个一模一样的碗,一号碗有30颗水果糖和10颗巧克力糖,二号碗有水果糖和巧克力糖各20颗。现在随机选择一个碗,从中摸出一颗糖,发现是水果糖。请问这颗水果糖来自一号碗的概率有多大?

公式

PA|B=PB|AP(A)/P(B)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值