DP--最长公共子序列

继续用典型问题来讨论动态规划的两个特性(重叠子问题和最优子结构)。最长公共子序列(LCS)问题描述:

给定两个序列,找出在两个序列中同时出现的最长子序列的长度。一个子序列是出现在相对顺序的序列,但不一定是连续的。例如,“ABC”,“ABG”,“BDF”,“AEG”,“acefg“,..等都是”ABCDEFG“ 序列。因此,长度为n的字符串有2 ^ n个不同的可能的序列。

注意最长公共子串(Longest CommonSubstring)和最长公共子序列(LongestCommon Subsequence, LCS)的区别:子串(Substring)是串的一个连续的部分,子序列(Subsequence)则是从不改变序列的顺序,而从序列中去掉任意的元素而获得的新序列;更简略地说,前者(子串)的字符的位置必须连续,后者(子序列LCS)则不必。比如字符串acdfg同akdfc的最长公共子串为df,而他们的最长公共子序列是adf。LCS可以使用动态规划法解决。

这是一个典型的计算机科学问题,基础差异(即输出两个文件之间的差异文件比较程序),并在生物信息学有较多应用。

例子:
输入序列“ABCDGH”和“AEDFHR” 的LCS是“ADH”长度为3。
输入序列“AGGTAB”和“GXTXAYB”的LCS是“GTAB”长度为4。

这个问题的直观的解决方案是同时生成给定序列的所有子序列,找到最长匹配的子序列。此解决方案的复杂性是指数的。让我们来看看如何这个问题 (拥有动态规划(DP)问题的两个重要特性):

1)最优子结构:
设输入序列是X [0 .. m-1]和Y [0 .. n-1],长度分别为m和n。和设序列 L(X [0 .. m-1],Y[0 .. n-1])是这两个序列的LCS的长度。

以下为L(X [0 .. M-1],Y [0 .. N-1])的递归定义:

如果两个序列的最后一个元素匹配(即X [M-1] == Y [N-1])
L(X [0 .. M-1],Y [0 .. N-1])= 1 + L(X [0 .. M-2],Y [0 .. N-1])

如果两个序列的最后字符不匹配(即X [M-1]!= Y [N-1])
L(X [0 .. M-1],Y [0 .. N-1])= MAX(L(X [0 .. M-2],Y [0 .. N-1]),L(X [0 .. M-1],Y [0 .. N-2])

例子:

1)考虑输入字符串“AGGTAB”和“GXTXAYB”。最后一个字符匹配的字符串。这样的LCS的长度可以写成:
L(“AGGTAB”, “GXTXAYB”) = 1 + L(“AGGTA”, “GXTXAY”)

2)考虑输入字符串“ABCDGH”和“AEDFHR。最后字符不为字符串相匹配。这样的LCS的长度可以写成:
L(“ABCDGH”, “AEDFHR”) = MAX ( L(“ABCDG”, “AEDFHR”), L(“ABCDGH”, “AEDFH”) )

因此,LCS问题有最优子结构性质!

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 100;
char a[maxn], b[maxn];

int lcs(int m, int n)
{
	if(m == 0 || n == 0) return 0;
    if(a[m-1] == b[n-1]) return lcs(m-1, n-1) + 1;
    return max(lcs(m, n-1), lcs(m-1, n));
}

int main()
{
	while(~scanf("%s%s", a, b)) {
		int m = strlen(a), n = strlen(b);
        printf("%d\n", lcs(m, n));
	}
    return 0;
}


2)重叠子问题:
以下是直接的递归实现,  遵循上面提到的递归结构。(有兴趣的读者可以按照前面讲的记忆化存储来实现)

如果我们绘制完整的递归树,那么我们可以看到,我们可以看到很多重复的调用。 所以这个问题有重叠的子结构性质,我们可以用迭代写:

int lcs(int m, int n)
{
	int dp[m+1][n+1];
	for(int i=0; i<=m; i++) {
		for(int j=0; j<=n; j++) {
			if(i==0 || j==0) dp[i][j] = 0;
			else if(a[i-1] == b[j-1]) dp[i][j] = dp[i-1][j-1]+1;
			else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
		}
	}
	return dp[m][n];
}


#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 100;
char a[maxn], b[maxn], ans[maxn];
int dp[maxn][maxn];

//int lcs(int m, int n)
//{
//	if(m == 0 || n == 0) return 0;
//    if(a[m-1] == b[n-1]) return lcs(m-1, n-1) + 1;
//    return max(lcs(m, n-1), lcs(m-1, n));
//}

int lcs(int m, int n)
{
	for(int i=0; i<=m; i++) {
		for(int j=0; j<=n; j++) {
			if(i==0 || j==0) dp[i][j] = 0;
			else if(a[i-1] == b[j-1]) dp[i][j] = dp[i-1][j-1]+1;
			else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
		}
	}
	return dp[m][n];
}

void build_lcs(char* ans, int m, int n)
{
	int cnt = lcs(m, n);
	ans[cnt] = 0;
	while(cnt > 0) {
		if(dp[m][n] == dp[m-1][n]) m--;
		else if(dp[m][n] == dp[m][n-1]) n--;
		else {
			ans[--cnt] = a[m-1];
			n--;
		}
	}
}

int main()
{
	while(~scanf("%s%s", a, b)) {
		int m = strlen(a), n = strlen(b);
        //printf("%d\n", lcs(m, n));
        build_lcs(ans, m, n); printf("%s\n", ans);
	}
    return 0;
}


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值