Linear Algebra Done Right 3E【第五章定理】

第五章 本征值、本征向量、不变子空间

本系列读书笔记仅摘录《Linear Algebra Done Right》中文版(原书第三版)部分定理结论,便于自学翻阅,相关证明有空再补充~

5.6 本征值的等价条件

设 V 是 有 限 维 的 , T ∈ L ( V ) 且 λ ∈ F . 设V 是有限维的,T\in \mathcal L(V)且\lambda\in F. V,TL(V)λF.

则 以 下 条 件 等 价 : 则以下条件等价:

( a )   λ   是   T   的 本 征 值 (a)\space \lambda\space是\space T \space的本征值 (a) λ  T 

( b )   T − λ I 不 是 单 的 (b)\space T-\lambda I不是单的 (b) TλI

( c )   T − λ I 不 是 满 的 (c)\space T-\lambda I不是满的 (c) TλI

( d )   T − λ I 不 是 可 逆 的 (d)\space T-\lambda I不是可逆的 (d) TλI
  \space  

5.10 线性无关的本征向量

设 T ∈ L ( V ) .   设 λ 1 , ⋅ ⋅ ⋅ , λ m 是 T 的 互 不 相 同 的 本 征 值 , 设T\in\mathcal L(V).\space设\lambda_1,···,\lambda_m是T的互不相同的本征值, TL(V). λ1,,λmT

并 设 v 1 , ⋅ ⋅ ⋅ , v m 是 相 应 的 本 征 向 量 并设v_1,···,v_m是相应的本征向量 v1,,vm

则 v 1 , ⋅ ⋅ ⋅ , v m 是 线 性 无 关 的 . 则v_1,···,v_m是线性无关的. v1,,vm线.
  \space  

5.13 本征值的个数

设 V 是 有 限 维 的 , 则 V 上 的 每 个 算 子 最 多 有 d i m V 个 互 不 相 同 的 本 征 值 . 设V是有限维的,则V上的每个算子最多有dimV个互不相同的本征值. VVdimV.
  \space  

5.21 复向量空间上的算子都有本征值

有 限 维   非 零   复 向 量 空 间 上 的 每 个 算 子 都 有 本 征 值 . 有限维\space非零\space复向量空间上的每个算子都有本征值.   .
  \space  

5.26 上三角矩阵的条件

设 T ∈ L ( V ) , 且 v 1 , ⋅ ⋅ ⋅ , v n 是 V 的 基 . 则 以 下 条 件 等 价 : 设T\in \mathcal L(V),且v_1,···,v_n是V的基.则以下条件等价: TL(V),v1,,vnV.:

( a )   T 关 于 v 1 , ⋅ ⋅ ⋅ , v n 的 矩 阵 是 上 三 角 的 (a)\space T关于v_1,···,v_n的矩阵是上三角的 (a) Tv1,,vn

( b )   对 每 个 j = 1 , ⋅ ⋅ ⋅ , n 有 T v j ∈ s p a n ( v 1 , ⋅ ⋅ ⋅ , v j ) (b)\space对每个j=1,···,n有Tv_j\in span(v_1,···,v_j) (b) j=1,,nTvjspan(v1,,vj)

( c )   对 每 个 j = 1 , ⋅ ⋅ ⋅ , n 有 s p a n ( v 1 , ⋅ ⋅ ⋅ , v j ) 在 T 下 不 变 (c)\space对每个j=1,···,n有span(v_1,···,v_j)在T下不变 (c) j=1,,nspan(v1,,vj)T
  \space  

5.27 在C上,每个算子均有上三角矩阵

设 V 是 有 限 维 复 向 量 空 间 , T ∈ L ( V ) . 设V是有限维复向量空间,T\in \mathcal L(V). V,TL(V).

则 T 关 于 V 的 某 个 基 有 上 三 角 矩 阵 . 则T关于V的某个基有上三角矩阵. TV.
  \space  

5.30 由上三角矩阵确定可逆性

设 T ∈ L ( V ) 关 于 V 的 某 个 基 有 上 三 角 矩 阵 . 设T\in \mathcal L(V)关于V的某个基有上三角矩阵. TL(V)V.

则 T 是 可 逆 的 当 且 仅 当 这 个 上 三 角 矩 阵 对 角 线 上 的 元 素 都 不 是 0. 则T是可逆的当且仅当这个上三角矩阵对角线上的元素都不是0. T线0.
  \space  

5.32 从上三角矩阵确定本征值

设 T ∈ L ( V ) 关 于 V 的 某 个 基 有 上 三 角 矩 阵 . 设T \in \mathcal L(V)关于V的某个基有上三角矩阵. TL(V)V.

则 T 的 本 征 值 恰 为 这 个 上 三 角 矩 阵 对 角 线 上 的 元 素 . 则T的本征值恰为这个上三角矩阵对角线上的元素. T线.
  \space  

5.38 本征空间之和是直和

设 V 是 有 限 维 的 , T ∈ L ( V ) . 设V是有限维的,T\in \mathcal L(V). VTL(V).

设 λ 1 , ⋅ ⋅ ⋅ , λ m 是 T 的 互 异 的 本 征 值 . 设\lambda_1,···,\lambda_m是T的互异的本征值. λ1,,λmT.

则 E ( λ 1 , T ) + ⋅ ⋅ ⋅ + E ( λ m , T ) 是 直 和 . 则E(\lambda_1,T)+···+E(\lambda_m,T)是直和. E(λ1,T)++E(λm,T).

此 外 , d i m E ( λ 1 , T ) + ⋅ ⋅ ⋅ + d i m E ( λ m , T ) ⩽ d i m V . 此外,dimE(\lambda_1,T)+···+dimE(\lambda_m,T)\leqslant dimV. dimE(λ1,T)++dimE(λm,T)dimV.
  \space  

5.41 可对角化的等价条件

设 V 是 有 限 维 的 , T ∈ L ( V ) . 设V是有限维的,T\in \mathcal L(V). VTL(V).

用 λ 1 , ⋅ ⋅ ⋅ , λ m 表 示 T 的 所 有 互 异 的 本 征 值 . 用\lambda_1,···,\lambda_m表示T的所有互异的本征值. λ1,,λmT.

则 下 列 条 件 等 价 : 则下列条件等价:

( a )   T 可 对 角 化 (a)\space T可对角化 (a) T

( b )   V 有 由 T 的 本 征 向 量 构 成 的 基 (b)\space V有由T的本征向量构成的基 (b) VT

( c )   V 有 在 T 下 不 变 的 一 维 子 空 间 U 1 , ⋅ ⋅ ⋅ , U n 使 得 V = U 1 ⊕ ⋅ ⋅ ⋅ ⊕ U n (c)\space V有在T下不变的一维子空间U_1,···,U_n使得V=U_1\oplus···\oplus U_n (c) VTU1,,Un使V=U1Un

( d )   V = E ( λ 1 , T ) ⊕ ⋅ ⋅ ⋅ ⊕ E ( λ m , T ) (d)\space V=E(\lambda_1, T)\oplus···\oplus E(\lambda_m, T) (d) V=E(λ1,T)E(λm,T)

( e )   d i m V = d i m E ( λ 1 , T ) + ⋅ ⋅ ⋅ + d i m E ( λ m , T ) (e)\space dimV = dimE(\lambda_1, T)+···+dimE(\lambda_m, T) (e) dimV=dimE(λ1,T)++dimE(λm,T)
  \space  

5.44 本征值足够多则可对角化

若 T ∈ L ( V ) 有 d i m V 个 互 异 的 本 征 值 , 则 T 可 对 角 化 . 若T\in \mathcal L(V)有dimV个互异的本征值,则T可对角化. TL(V)dimVT.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值