Linear Algebra Done Right 3E【第六章定理】

本篇博客深入探讨了内积空间中的核心概念,包括勾股定理、正交分解、柯西-施瓦茨不等式、三角不等式、平行四边形恒等式以及正交投影的性质。内容涵盖舒尔定理、里斯表示定理和子空间的正交补等,揭示了线性代数中的几何直观和代数精妙。
摘要由CSDN通过智能技术生成

第六章 内积空间

本系列读书笔记仅摘录《Linear Algebra Done Right》中文版(原书第三版)部分定理结论,便于自学翻阅,相关证明有空再补充~

6.13 勾股定理(毕达哥拉斯定理)

设 u 和 v 是 V 中 的 正 交 向 量 , 则 ∥ u + v ∥ 2 = ∥ u ∥ 2 + ∥ v ∥ 2 . 设u和v是V中的正交向量,则\|u+v\|^2=\|u\|^2+\|v\|^2. uvVu+v2=u2+v2.
  \space  

6.14 正交分解

设 u , v ∈ V 且   v ≠ 0.   令   c = ⟨ u , v ⟩ ∥ v ∥ 2 , w = u − ⟨ u , v ⟩ ∥ v ∥ 2 v . 设u,v\in V且\space v\neq0.\space令\space c=\frac{\langle u,v\rangle}{\|v\|^2},w=u-\frac{\langle u,v\rangle}{\|v\|^2}v. u,vV v=0.  c=v2u,v,w=uv2u,vv.

则 ⟨ w , v ⟩ = 0   且   u = c v + w . 则\langle w,v\rangle=0\space且\space u=cv+w. w,v=0  u=cv+w.
  \space  

6.15 柯西-施瓦茨不等式

设 u , v ∈ V . 则 ∣ ⟨ u , v ⟩ ∣ ⩽ ∥ u ∥ ∥ v ∥ . 设u,v\in V.则|\langle u,v\rangle|\leqslant\|u\|\|v\|. u,vV.u,vuv.

等 号

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值