- 博客(22)
- 资源 (7)
- 收藏
- 关注
原创 04、GIT常用指令
git config user.namegit config user.emailgit config --global user.name "your name"git config --global user.email "your email"git config --global --listssh-keygen -ogit删除未跟踪的文件目录git clean -fdgit merge与git rebase的区别https://blog.csdn....
2020-12-31 09:40:20 173
原创 03、LINUX应用层
目录GCC编译添加环境变量的两种方法glibc libc glib的关系函数库静态链接库、动态链接库、动态加载库syscallsyslogdsystem()timeint ftruncate(int fd, off_t length)POSIX锁和FLOCK锁errorextern void bzero(void *s, int n)各种printf对比signal(int signum, sighandler_t handler)syn.
2020-12-31 09:36:27 805
原创 02、单片机疑难学习
STM32三种启动模式STM32上电或者复位后,代码区始终从0x00000000开始,三种启动模式其实就是将各自存储空间的地址映射到0x00000000中。(1)从Flash启动,将主Flash地址0x08000000映射到0x00000000,这样代码启动之后就相当于从0x08000000开始。(2)从RAM启动,将RAM地址0x20000000映射到0x00000000,这样代码启动之后就相当于从0x20000000开始。(3)从系统存储器启动。首先控制BOOT0 BOOT1管脚,复位后
2020-12-31 09:35:30 390 2
原创 01、C语言总结
目录C/C++命名约定变量动态编译与静态编译位段C语言函数中的省略号__attribute__一些C语言的预定义宏一些不常用的预处理volatile__builtin_expect.py与.pyc的区别C/C++命名约定命名规则具有一定随意性, 但相比按个人喜好命名, 一致性更重要, 所以无论你认为它们是否重要, 规则总归是规则.文件命名小写加下划线: this_is_file.c类、结构体、typedef、枚举类型命名大小写:Digita
2020-12-31 09:34:47 339 1
原创 机器学习日常9:如何理解目标函数中的正则项
转自:知乎作者:陶轻松链接:https://www.zhihu.com/question/20924039/answer/131421690来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。我尽量用通俗一点的话来解答一下楼主的问题,r(d)可以理解为有d的参数进行约束,或者 D 向量有d个维度。咱们将楼主的给的凸优化结构细化一点,别搞得那么抽象,不好解释; , 其中,咱...
2020-12-22 16:17:32 122
原创 机器学习日常15:拉格朗日乘子法和KKT条件
https://blog.csdn.net/xianlingmao/article/details/7919597
2020-12-22 16:15:38 63
原创 机器学习日常14:logistic回归和softmax回归
https://blog.csdn.net/vincent2610/article/details/52708863?locationNum=14
2020-12-22 16:15:20 64
原创 机器学习日常13:数据为什么要做归一化
https://blog.csdn.net/yehui_qy/article/details/53787386
2020-12-22 16:15:03 67
原创 机器学习日常11:共轭函数
https://blog.csdn.net/shenxiaolu1984/article/details/78194053?locationNum=3&fps=1
2020-12-22 16:14:27 105
原创 机器学习日常10:为什么L1稀疏,L2平滑
使用机器学习方法解决实际问题时,我们通常要用L1或L2范数做正则化(regularization),从而限制权值大小,减少过拟合风险。特别是在使用梯度下降来做目标函数优化时,很常见的说法是, L1正则化产生稀疏的权值, L2正则化产生平滑的权值。为什么会这样?这里面的本质原因是什么呢?下面我们从两个角度来解释这个问题。角度一:数学公式这个角度从权值的更新公式来看权值的收敛结果。首先来看看L1和L...
2020-12-22 16:14:08 291
原创 机器学习日常7:带你理解beta分布
https://blog.csdn.net/a358463121/article/details/52562940
2020-12-22 16:12:05 109
原创 机器学习日常6:贝叶斯估计简单理解
https://blog.csdn.net/liu1194397014/article/details/52766760#fn:bayes
2020-12-22 16:11:43 100
原创 机器学习日常5:核密度估计 Kernel Density Estimation(KDE)
https://blog.csdn.net/unixtch/article/details/78556499
2020-12-22 16:11:23 241
原创 机器学习日常4:Hessian矩阵与多元函数极值
https://blog.csdn.net/baimafujinji/article/details/51167852
2020-12-22 16:10:08 171
原创 机器学习日常3:牛顿法解logistic回归
https://blog.csdn.net/baimafujinji/article/details/51179381
2020-12-22 16:09:43 108
原创 机器学习日常2:牛顿迭代法原理与编程
转自:https://blog.csdn.net/baimafujinji/article/details/50390841牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。 既然牛顿迭代法可以用来求解方程的根,那么不妨以方程x2=nx2=n...
2020-12-22 16:09:25 719
原创 机器学习日常1:Logistic回归的详细推导
转自:https://blog.csdn.net/btbujhj/article/details/73730019这篇文章写得太好了,正好我也在看机器学习实战这本书!机器学习实战书中没有具体推理权重向量θ更新的过程,仅仅是下面三行代码(1)求A=x.θ;(2)求E=sigmoid(A)-y;(3)求θ:=θ-α.x'.E,x'表示矩阵x的转置。 为什么这样更新???Logistic回归总结作者...
2020-12-22 16:08:43 102
原创 机器学习日常17:Bagging,Boosting(包括Adaboost,gradient boosting)简单小结
集成学习通过构建并结合多个学习器来完成学习任务。通俗来讲就是用多个分类器或者线性模型来结合成一个黑盒子,这个黑盒子要比单一学习器有更显著优越的性能(比如精度,泛化性能)。在这里引用西瓜书中的描述:根据个体学习器的生成方式,目前集成学习方法大致分成两大类,1,个体学习器间存在强依赖关系,必须用串行生成的序列化方法,这里指用Boosting 2,个体学习器间不存在强依赖关系,可同时生成的并行化方法...
2018-05-16 09:37:00 802
stm32mp157多核通信大会有关ppt.zip
2019-12-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人