机器学习日常2:牛顿迭代法原理与编程

 

牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。 
 


 


       既然牛顿迭代法可以用来求解方程的根,那么不妨以方程 x2=nx2=n 为例,来试着求解它的根。为此。令f(x)=x2−nf(x)=x2−n, 也就是相当于求解 f(x)=0f(x)=0 的解,如上图所示。 


       首先随便找一个初始值 x0x0,如果 x0x0不是解,做一个经过 (x0,f(x0))(x0,f(x0)) 这个点的切线,与xx轴的交点为x1x1。同样的道理,如果 x1x1不是解,做一个经过(x1,f(x1))(x1,f(x1))这个点的切线,与xx轴的交点为x2x2。 以此类推。以这样的方式得到的xixi会无限趋近于 f(x)=0f(x)=0 的解。 


判断xixi是否是f(x)=0f(x)=0的解有两种方法: 一是直接计算f(xi)f(xi)的值判断是否为00,二是判断前后两个解xixi和xi−1xi−1是否无限接近。 


经过(xi,f(xi))(xi,f(xi))这个点的切线方程为

 

 
f(x)=f(xi)+f′(xi)(x−xi)f(x)=f(xi)+f′(xi)(x−xi)

其中,f′(x)f′(x)为f(x)f(x)的导数,本题中为2x2x。令切线方程等于 00,即可求出

 
xi+1=xi−f(xi)f′(xi)xi+1=xi−f(xi)f′(xi)

 

 


继续化简 

 

 

 

 

 

 

 

 

 

xi+1=xi−x2i−n2xi=xi−xi2+n2xi=xi2+n2xixi+1=xi−xi2−n2xi=xi−xi2+n2xi=xi2+n2xi

 


基于上述迭代公式,我们其实给出了一个求平方根的算法。事实上,这也的确是很多语言中内置的开平方函数的实现方法。 


Leetcode上也有一道经典面试题目涉及到开平方函数的实现,如下

 

 

这里写图片描述


基于我们已经给出的牛顿迭代法,下面就可来编程解决该问题了,示例代码如下 

class Solution {
public:
    int mySqrt(int x) {
        if (x ==0)  
        return 0;  
        double pre;  
        double cur = 1;  
        do  
        {  
        pre = cur;  
        cur = x / (2 * pre) + pre / 2.0;  
        } while (abs(cur - pre) > 0.00001);  
        return int(cur);  
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值