向日葵远程,听远程机器的声音

文章介绍了如何在Win11和Win10系统下,通过调整被控和控制机器的设置,实现向日葵远程控制时在控制机上播放被控机器的声音。主要步骤包括设置扬声器的独占模式,修改远程桌面的配置,以及在向日葵应用中启用播放对方设备声音的选项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、被控机器的配置

1. 配置扬声器的独占模式

 2. 修改远程桌面的配置

二、控制机的配置


前言

        当使用向日葵进行远程时,被控机器默认是在本机播放声音的,如果控制机想要听到被控机器的声音,需要做以下的操作。注意,以下操作使用的系统为win11,如使用的是其他系统,配置可能会有一些出入。

一、被控机器的配置

1. 配置扬声器的独占模式

  • Win 11

        点击屏幕右下角,点击设置图标,在设置弹窗点击“更多声音设置”

        点播放Tab点击“扬声器”,点击“属性”

 

        在高级Tab勾选“允许应用程序独占控制该设备”,点击“确定”按钮

 

 

  •   Win 10

        在开始图标的搜索框里输入“设置” ,点击查询结果中的“设置”

        在设置弹窗的声音页面,点击“设备属性”

         点击“其他设备属性”,在扬声器属性弹窗打开“高级”Tab,勾选“允许应用程序独占控制该设备”

 

 2. 修改远程桌面的配置

         在键盘同时按下 win+R 按键,在运行弹窗输入:mstsc

        输入计算机地址,点击“显示选项”

        在远程桌面连接弹窗打开“本地资源”Tab,点击“设置”按钮,在弹窗的“远程音频播放”选择“在远程计算机上播放”,点击“确定”按钮

 

         点击“连接”按钮。(注意:如果不连接的话,“远程音频播放”的配置保持不了)

 

二、控制机的配置

1. 将鼠标放置向日葵远程窗口的上方,点击展开图标

  

2. 点击 “>” 图标,点击 “更多” 按钮,勾选 “播放对方设备声音”

        如果还是播放不了声音,可以尝试点击“语音”按钮

 

 参考链接:https://www.cnblogs.com/wwyxjjz/p/15193218.html

### YOLOv8 训练代码潜在错误分析 在检查 `ultralytics` 提供的 YOLOv8 模型训练代码时,需关注以下几个方面来判断是否存在可能的错误: #### 数据配置文件路径 数据集配置文件通常是一个 `.yaml` 文件,在代码中通过 `data` 参数指定。如果路径不正确或者文件不存在,则会引发异常。例如: ```python model.train(data='coco128.yaml', epochs=100, imgsz=640) ``` 上述代码假设当前工作目录下存在名为 `coco128.yaml` 的文件[^1]。如果没有找到该文件,程序可能会抛出 FileNotFoundError 或类似的错误。 #### 预训练模型加载方式 加载预训练模型的方式有多种可能性。以下是几种常见方法及其适用场景: - **从 YAML 定义创建新模型并加载权重** ```python model = YOLO('yolov8n.yaml').load('yolov8n.pt') ``` 此处需要注意的是,YAML 文件定义了网络结构,而 `.pt` 文件包含了实际的权重值。两者必须匹配,否则可能导致维度不一致等问题。 - **直接加载预训练模型** ```python model = YOLO('yolov8n.pt') ``` 这是最常用的方法之一,适用于大多数情况下的迁移学习任务。 #### 训练参数设置 对于训练过程中的超参数调整,以下是一些常见的选项以及它们的作用说明: - `epochs`: 总共迭代次数,默认为 100 轮。 - `imgsz`: 输入图像尺寸大小,默认为 640 像素。 - `batch`: 批量处理样本数量,默认情况下取决于硬件资源可用性[^2]。 另外还有其他可选参数如设备选择 (`device`) 和项目保存位置 (`project`) 等也可以自定义设定。 综上所述,只要确保所使用的各个组件之间相互兼容,并且所有必需输入都已正确定位提供给函数调用即可有效减少发生逻辑上的失误几率。 ```python from ultralytics import YOLO # 初始化模型 model = YOLO('yolov8n.yaml').load('yolov8n.pt') # 开始训练流程 model.train( data="path/to/your/coco128.yaml", # 替换为实际的数据集配置文件绝对路径 epochs=100, imgsz=640 ) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值