抽象代数
文章平均质量分 83
Echo00x0
这个作者很懒,什么都没留下…
展开
-
群的基本概念
群的定义和简单性质定义,如果一个非空集合G上定义了一个二元运算o,满足:1)结合律,推广(广义结合律:对于任意有限多个元素....)2)存在幺元(单位元)3)存在逆元4)交换律(满足的话,称G为交换群或Abel群)半群——非空集合S有二元运算,此运算满足结合律幺半群——具有幺元的半群命题:1)群的幺元唯一2)群中任一元素的逆元唯一3)群中原创 2016-03-24 02:56:18 · 23478 阅读 · 1 评论 -
环的基本概念
定义和简单性质定义: 如果一个非空集合R上定义了两个二元运算+,⋅\cdot(加法和乘法) 1)(R,+)构成Abel群; 2)乘法分配律: (a⋅b)⋅c=a⋅(b⋅c),∀a,b,c∈R;\,\,\,\,\,\,\,\,(a\cdot b)\cdot c=a\cdot(b\cdot c),\forall a,b,c \in R; 3)分配律: (a+b)⋅c=a⋅c+b⋅c,c⋅(a原创 2016-04-05 01:28:29 · 9450 阅读 · 0 评论 -
体、域的基本概念
体域的定义和例子体、域的定义和例子定义: 设D是含有至少两个元素的幺环.如果D的每个非零元素都可逆,则称D是一个体,具有乘法交换律的体称为域 “至少两个元素”等价于”1不等于0”有理数域Q、实数域R、复数域C都是熟知的域有理数域Q、实数域R、复数域C都是熟知的域 F⊆E,F和E都是域F\subseteq E,F和E都是域,则称F是E的子域,E是F的扩域原创 2016-04-08 17:16:59 · 2411 阅读 · 0 评论 -
群—深入
几种特殊类型的群循环群单群及其单性几种特殊类型的群循环群定义 : 循环群(由一个元素生成的群是最简单的群) 若由群G的一个生成元素g的幂次构成G群,即G={g,g2,…,gn}则称G为循环群。元素g称为G的生成元素。定理: 1)无限循环群必同构于整数加法群ZZ,有限循环群必同构于整数加法群的某个商群Z/mZZ/mZ2)有限循环群G=《a》的子群仍为循环群。确切说,每个s∈Z⩾0对应于子群《原创 2016-04-11 11:31:38 · 1169 阅读 · 0 评论