scala的Actor是基于事件模型的,具体的模型可以自己查询资料,这里根据别人的demo代码自己也写了一个基于Actor的事件模型的多文件计算WordCount,代码中我写了详细的注释,仅供参考
首先在D盘下面创建三个文件,里面写一些单词用空格分开:
具体代码如下:
package com.lijie.actor
import scala.actors._
import scala.collection.mutable
import scala.collection.mutable.ListBuffer
import scala.io.Source
/**
* Created by Lijie on 2017/3/22.
*/
class MyActor extends Actor {
//重写Actor中的act()方法,和java中的run()一样
override def act(): Unit = {
//相当于while(true) 这里用react可以复用线程池
loop {
//这是个偏函数,定义两个模式匹配
react {
case MapCalculation(fileName) => {
//计算文件中的word的数量,并用sender把消息发送回去
sender ! MapResult(Source.fromFile(fileName).getLines().flatMap(_.split(" ")).map((_, 1)).toList.groupBy(_._1).mapValues(_.size))
}
}
}
}
}
//定义一个case class 用来模拟map的word统计
case class MapCalculation(fileName: String)
//定义一个case class 用来模拟map的word统计的返回结果封装
case class MapResult(mapResult: Map[String, Int])
object MyActor {
def main(args: Array[String]): Unit = {
//用来存储异步返回的future
val futures = new mutable.HashSet[Future[Any]]()
//用来存储map返回的值
val listRes = new ListBuffer[Map[String, Int]]()
//定义文件的位置,类似于mapreduce的FileInputFormat.addInputPath
val files = Array("D:\\lijietest01.txt", "D:\\lijietest02.log", "D:\\lijietest03.txt")
//循环向MyActor发送消息
for (fileName <- files) {
//创建消息对象 并启动 且发送异步消息
//每启动一个发送一个异步消息并返回一个Future,这里同java中的Callable
val actor = new MyActor
//发送异步消息并返回Future(! !? !!)
val future = actor.start() !! MapCalculation(fileName)
//扔到hashSet中
futures += future
}
//模拟reduce
while (futures.size > 0) {
//这里取出已经计算完成的异步返回 isSet类似于Callable的isDone返回boolean,将计算完的结果放到res
val res = futures.filter(_.isSet)
for (r <- res) {
//这里的apply()相当于Callable的get(),强转成MapResult(上面那个case class),取出里面的map并且放入到一个list中
listRes += r.apply().asInstanceOf[MapResult].mapResult
//移除futures已经处理的对象,直到移除完 这个while循环就终止
futures -= r
//如果文件很大,最后设定睡眠时间,不然cpu会空跑
Thread.sleep(100)
}
}
//对上面处理完成的map结果进行reduce
//其中这个listRes打印出来如下:(因为我这里三个文件内容一样,所以每个map里面的数据一样)
// ListBuffer(
// Map(world -> 1, soga -> 1, scala -> 2, lijie -> 4, abcd -> 1, hello -> 3, nihao -> 1),
// Map(world -> 1, soga -> 1, scala -> 2, lijie -> 4, abcd -> 1, hello -> 3, nihao -> 1),
// Map(world -> 1, soga -> 1, scala -> 2, lijie -> 4, abcd -> 1, hello -> 3, nihao -> 1)
// )
val wordCount = listRes.flatten.groupBy(_._1).mapValues(_.foldLeft(0)(_ + _._2))
//测试打印结果
//Map(world -> 3, soga -> 3, scala -> 6, lijie -> 12, abcd -> 3, hello -> 9, nihao -> 3)
println(wordCount)
}
}
运行结果如下: