OpenCv
文章平均质量分 53
会的东西有点杂
机电专业本硕,在一自动化德企搞电气控制多年,尤爱代码编程,喜欢DIY各种小制作。
展开
-
应用OpenCV绘制箭头
语法格式:cv2.arrowedLine(img, pt1, pt2, color[, thickness[, line_type[, shift[, tipLength]]]])默认值为1,设置为-1时表示绘制填充图形(绘制直线时,不能设置为-1)。lineType表示线条类型,默认值为cv2.Line_8。color为线条的颜色。通常使用BGR模型表示颜色,如(255,0,0)表示蓝色。pt1:直线的起点位置,是一个坐标点,类似(X,Y)这样。pt2:直线的终点位置,是一个坐标点,类似(X,Y)这样。原创 2024-01-06 20:23:45 · 1306 阅读 · 0 评论 -
基于OpenCV的透视变换
透视变换(Perspective Transformation)是仿射变换的一种非线性扩展,是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。格式:cv2.warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]])首先根据变换前后的四个点用cv.getPerspectiveTransform()生成3×3的变换矩阵。src:原图像中4个点的坐标。原创 2024-01-06 19:51:03 · 699 阅读 · 0 评论 -
基于OpenCV的图像平移
flages:表示插值方式,默认为 flags=cv2.INTER_LINEAR,表示线性插值,cv2.INTER_NEAREST为最近邻插值,cv2.INTER_AREA为区域插值,cv2.INTER_CUBIC为三次样条插值,cv2.INTER_LANCAOS4为Lanczos插值。图像的平移操作是将图像的所有像素坐标进行水平或者垂直方向的移动,也就是所有像素点按照给定的偏移量在水平方向上沿X轴,垂直方向上沿y轴移动。OpenCV中实现图像平移的方法。dsize:输出图像的大小。原创 2024-01-05 10:23:15 · 814 阅读 · 0 评论 -
基于OpenCV的图像缩放
interpolation表示插值方式,该参数值以下5种,在缩小时推荐使用cv2.INTER_AREA,扩大时推荐使用cv2.INTER_CUBIC和cv2.INTER_LINEAR。缩放是将图像的尺寸变小或变大的过程,即减少或增加原图像数据的像素个数,或者说通过增加或删除像素点来改变图像的尺寸;图像缩放算法:最近邻插值算法、双线性插值算法、立方插值算法、像素关系重采样算法。dsize表示转换后的图像大小。src表示用于缩放的原图像。fx表示水平方向的缩放比例。dst表示转换后的图像。原创 2024-01-05 10:17:00 · 774 阅读 · 0 评论 -
基于OpenCV的透视变化
透视变换(Perspective Transformation)是仿射变换的一种非线性扩展,是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。格式:cv2.warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]])首先根据变换前后的四个点用cv.getPerspectiveTransform()生成3×3的变换矩阵。src:原图像中4个点的坐标。原创 2024-01-04 10:25:19 · 673 阅读 · 0 评论 -
基于OpenCV的仿射变换
flages:表示插值方式,默认为 flags=cv2.INTER_LINEAR,表示线性插值,cv2.INTER_NEAREST为最近邻插值,cv2.INTER_AREA为区域插值,cv2.INTER_CUBIC为三次样条插值,cv2.INTER_LANCAOS4为Lanczos插值。仿射变换可以通过一系列的原子变换的复合来实现包括:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和错切(Shear)dst:输出图像,其大小为dsize。原创 2024-01-04 10:22:11 · 854 阅读 · 1 评论 -
OpenCV中实现图像旋转的方法
OpenCV中实现图像旋转的方法函数:cv2.flip()功能:水平或者垂直翻转格式:dst= cv2.flip(src,flipCode[,dst])参数说明:src:输入图像dst:和原图像具有相同大小、类型的目标图像。flipCode:旋转类型 ,取值如下:0:绕x轴翻转(垂直翻转)大于0整数:绕y轴翻转(水平翻转)小于0整数:同时绕x轴和y轴翻转(水平和垂直翻转)原创 2024-01-03 20:29:02 · 826 阅读 · 0 评论 -
顶帽运算在OpenCv中的应用
图片中的火星部分正好属于比周围亮一些的斑块,那么在这么一幅具有大幅背景,且微小物品比较有规律的图片中,顶帽运算恰好就可以用来分离出这些比临近点亮一些的斑块。假如我们拍了一张自拍,想为自己的照片添加一个酷炫的火星飞舞的效果,素材库中正好有一张火焰的照片,如果想去除图中的火焰,只保留火星效果,可以使用顶帽子算法。原创 2024-01-03 20:23:09 · 373 阅读 · 0 评论 -
基于 EigenFaces 的人脸检测
EigenFaces 人脸检测是一种从主成分分析(Principal Component Analysis,PCA)中导出的人脸识别和描述技术。特征脸方法就是从大量的人脸图像中,寻找出人脸的共性。将眼睛、面颊、下颌样板采集协方差矩阵的特征向量统称为特征子脸。原创 2024-01-02 08:42:16 · 1135 阅读 · 0 评论 -
基于OpenCv的车道检测
通过图像的灰度化,可以大大减小计算量和不必要的干扰由于边缘提取对噪声非常敏感,所以还要对图像进行适当的降噪处理可以使用高斯滤波,去除不必要的噪点。将draw_lanes(hough_lines_img, hough_lines, draw_type='line')中最后的参数修改为‘area’。使用霍夫直线变换,将车道图像转换成直线图像,以便于后续的计算。三、使用ROI区域截取,截取需要的部分,再次剔除干扰。一、将图像灰度化,并进行适度的高斯滤波,剔除干扰。四、利用霍夫直线检测,检测出图像中直线部分。原创 2024-01-01 12:21:04 · 963 阅读 · 0 评论 -
3D视觉-结构光测量-网格结构光测量
网格结构光测量也常常被称为面结构光测量,它首先需要用投影器件产生符合条件的网格状投射光,并投射到待测物表面,由于网格上的光条具有两个方向,因此该方法可以通过两个测量方向分析待测物表面的三维坐标信息,理论上更加精确。但是相比前几种结构光测量方法,该方法明显在结构上更加复杂,对相机的性能和后期的数字图像分析都有很大的考验。原创 2023-12-31 10:02:35 · 486 阅读 · 0 评论 -
图像倾斜角度求取-Radon变换
从上面图像可以看到,傅里叶变化图像3方向,与图像2纹理方向呈现垂直关系。我们只要求出来图3的倾斜方向,即可求出来实际图像的倾斜方向。Radon(拉东)算法是一种通过定方向投影叠加,找到最大投影值时角度,从而确定图像倾斜角度的算法。对于尺寸较大的图像,可采取金字塔下采样方式,将图像进行压缩,以减少Radon计算的时间。对于纹理方向明显的图像,如图2所示,可以通过Radon变换求取倾斜角度。应用Cv2.PyrDown进行金字塔下采样,减少图像3的尺寸。图3 二值化后的傅里叶变换图像。压缩后的图像如下图4所示。原创 2023-11-19 20:51:10 · 426 阅读 · 0 评论 -
LED主流光源
①条形光源是大面积打光的首选光源,性价比高;②颜色可根据需求搭配,自由组合;③光源照射角度与安装灵活可调。①金属、玻璃等表面检查;②表面裂缝检测;LCD面板检测;③线阵相机照明;④图像扫描。原创 2023-10-28 09:23:41 · 233 阅读 · 0 评论 -
影响光源的因素
当光源入射到物体表面的时候,光源的放映是可以预测的,光源可能被吸收或被。亮度是光源选择时的重要参考,尽量选择亮度高的光源。预测光源如何在物体表面反射就可以决定出光源的位置。使机器视觉照明复杂化的是由于物体表面的变化造成的。鲁棒性是指光源是否对部件的位置敏感度最小。原创 2023-10-28 09:21:00 · 218 阅读 · 0 评论 -
计算机视觉-光源的目的和作用
的核心是图像采集和图像处理,而光源则是影响图像水平的重要因素,通过适当的光源照明,使图像中的目标信息与背景信息得到更好的分离,可大大降低图像识别难度,提高系统的精度和可靠性。对于机器视觉检测系统,稳定均匀的光源极其重要。光源的目的是将被测物与背景尽量明显区分开来,获得高品质、高对比度的图像。)克服环境光干扰,保证图像的稳定性,如。)形成最有利于图像处理的成像效果,如。)照亮目标,提高目标亮度,如。原创 2023-10-27 08:27:20 · 562 阅读 · 0 评论 -
机器视觉的四大功能
机器视觉就是采用成像技术获取被测目标的图像,再经过快速图像处理与图像识别算法,从摄取图像中获取目标的尺寸、方位、光谱结构、缺陷等信息,从而可以执行产品的检验、分类与分组、装配线上的机械手运动引导、零部件的识别与定位、生产过程中质量监控与过程反馈等任务。原创 2023-10-27 08:23:19 · 411 阅读 · 0 评论 -
常用机器视觉开发软件介绍
NI公司的视觉开发模块是专为从事开发机器视觉和科学成像应用的科学家、工程师和技术人员设计的。Vision Builder是一个交互式的开发环境,开发人员无需编程,即能快速完成视觉应用系统模型的建立;其中包含了各类滤波、色彩以及数学转换、形态学计算分析、校正、分类辨识、形状搜寻等基本的几何和影像计算功能,由于这些功能大多并非针对特定工作而设计,因此只要涉及图像处理,就可以利用 HALCON强大的计算分析能力来完成工作,其应用范围几乎没有限制,涵盖从医学、遥感探测、监控,到工业上的各类自动化检测等众多领域。原创 2023-10-26 08:54:06 · 700 阅读 · 0 评论 -
机器视觉系统的构成
计算机视觉系统的构成主要包括光源、工业相机与工业镜头、传感器、图像采集卡、PC平台和视觉处理软件部分,具体功能如下:光源①光源——作为辅助成像器件,对成像质量好坏起到至关重要的作用,各种形状的LED灯、高频荧光灯、光纤卤素灯等都是常用光源。工业相机与工业镜头②工业相机与工业镜头——属于成像器件,通常视觉系统都是由一套或者多套成像系统组成,如果有多路相机,可能由图像卡切换来获取图像数据,也可能由同步控制同时获取多相机通道的数据。原创 2023-10-26 08:52:01 · 991 阅读 · 0 评论 -
图像风格迁移的发展历程
这时,巧妙的事情就发生了,生成器会努力使自己生成的图片骗过判别器,方法自然是生成的图片越真实越容易欺骗判别器;判别器则会努力分辨输入到底是真实的还是生成的,其反馈来指导生成器生成更真实的图片,从而形成一种动态博弈,结果是输出的图片在内容和风格上都类似于真实数据集。这一方法没有流行起来的原因是当时纹理迁移的是基于像素的底层图像特征,并没有过多的考虑语义信息,因此图像的迁移结果并不理想。但是随着深度学习的飞速发展,基于神经网络的图像迁移方法有了巨大的进步,以下的介绍都是基于神经网络的图像迁移方法。原创 2023-10-25 09:06:05 · 792 阅读 · 0 评论 -
语义分割的常用方法和评价准则
这样的评价指标可以判断目标的捕获程度(使预测标签与标注尽可能重合),也可以判断模型的精确程度(使并集尽可能重合)。目前主流的语义分割网络一般是遵循下采样,上采样,特征融合,然后重复该过程,最后经过。指的是两块区域相交的部分(两个部分的并集),如图中绿色部分。):每一类像素的精度的平均值。):每一类出现的频率作为权重。):每一类像素正确分类的个数。每一类像素的实际个数。原创 2023-10-25 08:51:52 · 334 阅读 · 0 评论 -
计算机图像处理-中值滤波
区域里面的中值,将每一像素点的灰度值设置为该点某邻域窗口内所有像素点灰度值的中值。中值对椒盐噪声(脉冲噪声)有很好的抑制作用。中值滤波的原理是把以当前像素为中心的小窗口内的所有像素的灰度按从小到大排序,取排序结果的中间值作为该像素的灰度值。非线性滤波是利用原始图像跟模版之间的一种逻辑关系得到结果,常用的非线性滤波方法有中值滤波和高斯。个像素进行排序,最后将这个矩阵的中心点赋值为这九个像素的中值。就是这串数字的中值。由此可以应用到图像处理中。矩阵中对中心值取值的计算过程。来实现中值滤波,其中参数。原创 2023-10-01 07:00:00 · 386 阅读 · 0 评论 -
计算机图像处理-高斯滤波
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到,通常用它来减少图像噪声以及降低细节层次。这种模糊技术生成的图像,其视觉效果就像是经过一个毛玻璃在观察图像,这与镜头焦外成像效果以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预处理阶段,以增强图像在不同比例大小下的图像效果(参见尺度空间表示以及尺度空间实现)。原创 2023-10-01 07:00:00 · 343 阅读 · 0 评论 -
计算机图像处理-均值滤波
线性滤波器的原始数据与滤波结果是一种算术运算,即用加减乘除等运算实现,如均值滤波器(模板内像素灰度值的平均值)、高斯滤波器(高斯加权平均值)等。由于线性滤波器是算术运算,有固定的模板,因此滤波器的转移函数是可以确定并且是唯一的(转移函数即模板的傅里叶变换)。均值滤波是最简单的一种滤波操作,输出图像的每一个像素是核窗口内输入图像对应像素的平均值(所有像素加权系数相等)。OpenCV中利用cv2.blur(img,ksize来实现均值滤波,其中参数img为原图像,ksize。原创 2023-09-30 07:00:00 · 305 阅读 · 0 评论 -
计算机图像处理:椒盐噪声和高斯噪声
无论是均衡化直方图和图像滤波,都一定程度上降低了图像阈值分割的难度,直方图增强图像内的对比度,图像滤波消除图像内的噪声干扰。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。图像滤波的两个目的是提取特征(抽出对象的特征作为图像识别的特征模式)和清除噪声(为适应图像处理的要求,消除图像数字化时所混入的噪声)。类似把椒盐撒在图像上,因此得名,是一种在图像上出现很多白点或黑点的噪声,如电视里的雪花噪声等。原创 2023-09-30 07:00:00 · 370 阅读 · 0 评论 -
计算机图像处理-直方图均衡化
直方图均衡化直方图均衡化是图像灰度变换中有一个非常有用的方法。图像的直方图是对图像对比度效果上的一种处理,旨在使得图像整体效果均匀,黑与白之间的各个像素级之间的点分布更均匀一点。通过这种方法,亮度可以更好地在直方图上分布。直方图均衡化(histogram)的目标是创建一幅在整个亮度范围内具有相同亮度分布的图像,输入直方图H[p]和亮度范围[p0,pk],直方图均衡化的目标是找到一个单调的像素亮度变换q=T(p),使输出直方图G[q]在整个输出亮度范围[q0,qk]原创 2023-09-29 07:00:00 · 307 阅读 · 0 评论 -
图像直方图的基础知识
任何一幅特定的图像都有唯一的直方图与之对应,但不同的图像可以有相同的直方图。如果一幅图像有两个不相连的区域组成,并且每个区域的直方图已知,则整幅图像的直方图是两个区域直方图的和。由于图像包含有大量的像元,其像元灰度值的分布应符合概率统计分布规律。图像的灰度值是离散变量,因此直方图表示的是离散的概率分布。若以各灰度级的像元数占总像元数的比例值为纵坐标轴做出图像的直方图,将直方图中各条形的最高点连成一条外轮廓线,纵坐标的比例值即为某灰度级出现的概率密度,轮廓线可近似看成图像相应的连续函数的概率分布曲线。原创 2023-09-29 07:00:00 · 341 阅读 · 0 评论 -
计算机图像处理:图像轮廓
图像阈值分割主要是针对图片的背景和前景进行分离,而图像轮廓也是图像中非常重要的一个特征信息,通过对图像轮廓的操作,就能获取目标图像的大小、位置、方向等信息。表示建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。分别为输入的图像、轮廓搜索模式(决定了轮廓的提取方式)、轮廓近似方法(决定了如何表达轮廓)。表示压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需。分别为返回的轮廓和图像的拓扑信息(轮廓层次)。分别为输入的图像、绘制的轮廓、轮廓填充和轮廓的颜色。原创 2023-09-28 07:00:00 · 692 阅读 · 0 评论 -
自适应阈值分割-OTSU
年提出,被认为是图像分割中阈值选取的最佳算法。其算法计算简单,不受图像亮度和对比度的影响,因此在数字图像处理上得到了广泛的应用。它是按图像的灰度特性,将图像分成背景和前景两部分。因方差是灰度分布均匀性的一种度量,背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。因此,使类间方差最大分割意味着错分概率最小。进行阈值分割,那如何知道选的这个阈值效果好不好呢?阈值分割方法,选择使得类间方差最大的值作为阈值,设图像的归一化直方图为。原创 2023-09-28 07:00:00 · 215 阅读 · 0 评论 -
阈值分割基础
固定阈值是将整幅图片都应用一个阈值进行分割,它并不适用于明暗分布不均的图片。自适应阈值分割通俗地讲就是图片的每个局部都会通过处理得到一个阈值,这个区域就用这个阈值来进行分割。每个区域都有不同的阈值来处理,这样就适用于处理颜色分布不均的图片。固定阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。自适应阈值方法每次取图片的小部分来计算阈值,这样图片不同区域的阈值就不尽相同。:大于阈值的部分,设置为阈值,否则不变;:小区域阈值的计算方式(原创 2023-09-27 10:08:40 · 167 阅读 · 0 评论 -
图像几何变换
图像缩放,顾名思义,就是对图像进行整体放大或缩小的操作。图像缩放在数据预处理时经常会用作规范图像的大小(宽高),从而便于后面神经网络的处理。图像翻转,即沿着某条线对图像进行翻转操作。图像翻转在数据集偏少的时候经常用来扩充数据集,从而增加拟合性。方法来对图像进行缩放操作,该方法可以按照指定的宽度,高度缩放图片,也可以按照比例缩放图片。分别为原图片、输出图像尺寸、目标图像、沿水平轴的比例因子、沿垂直轴的比例因子、插值方法。分别为输入图像、输出图像的大小、插值法。方法实现图像的翻转,其中参数。原创 2023-09-27 10:05:37 · 76 阅读 · 0 评论 -
图像绘制-线段、矩形、圆形、椭圆等
椭圆的中心坐标、元组(椭圆的长轴长度,短轴长度)、旋转角度、椭圆弧的起始角度、椭圆弧的终止角度、边界线的颜色、分别为多边形上点的数组、标志、多边形颜色、多边形线的粗细、多边形线的类型。画矩形的方法可分为两种,一种是确定四个顶点的坐标,另一种只确定两个对角顶点的坐标。(可省略)依次为起点的坐标、终点的坐标、颜色、线条的粗细和线条的类型。(可省略)依次为圆形的原点、圆形的半径、颜色、线条的粗细和线条的类型。为输入的图像(绘制图像的每个方法的第一个参数都是输入的图像),参数。线条的粗细和线条的类型。原创 2023-09-26 07:00:00 · 113 阅读 · 0 评论 -
图像的读写与保存
首先需要新建一个空白窗口用作图像显示,再调用图片显示命令在窗口中显示出图片。在一般使用的时候,可以跳过此步,直接使用。该方法执行后会弹出一个窗口,窗口的名字就是上面定义的。显示完成后,还需要释放窗口占用的资源,这里使用。方法,该方法会释放所有窗口占用的资源,如果要释放指定窗口的资源,可以使用。的功能就是新建一个显示窗口,可以指定窗口的类型。:图片的读取方式,省略则为默认值。,表示窗口大小自适应图片,也可以设置为。如果想要设置窗口的显示时间,则需要使用。方法,参数为设置的毫秒数,是窗口的名字,第二个参数。原创 2023-09-26 07:00:00 · 81 阅读 · 0 评论 -
图像相关名词概述
可以用来描述不同的颜色空间。颜色模式,是将某种颜色表现为数字形式的模型,或者说是一种记录图像颜色的方式。分别代表红、绿、蓝三个通道的颜色,这个标准几乎囊括了人类视力所能感知的所有颜色,是目前运用最广的颜色系统之一。在实际运用中经常会用到这两种布局的转换,转换方式也非常简单,只需使用数组的。三个颜色通道的变化以及通道之间相互的叠加来得到各式各样的颜色。更容易跟踪某种颜色的物体,常用于分割指定颜色的物体。模式是工业界的一种颜色标准,通过对红。年创建的一种根据颜色直观特性(色调。原创 2023-09-25 07:34:16 · 93 阅读 · 0 评论 -
图像相关名词概述
,亦称为点阵图像或栅格图像,是由称作像素(图片元素)的单个点组成的。位图的特点是可以表现色彩的变化和颜色的细微过渡,产生逼真的效果,缺点是在保存时需要记录每一个像素的位置和颜色值,占用较大的存储空间。单通道:就是通常所说的灰度图,每个像素点只有一个值表示,如果图像的深度为。三通道:就是通常所说的彩色图,每个像素点由三个值表示,如果图像深度为。图像通常分为单通道,三通道,四通道。的二进制位来表示,因此每个像素占。位数,就是图像的深度。的二进制表示,因此每个像素占。的二进制表示,因此每个像素占。原创 2023-09-25 07:30:35 · 213 阅读 · 0 评论 -
基于C#的频域下傅里叶同态滤波实现
同态滤波是信号与图像处理中的一种常用技术,它采用了一种线性滤波在不同域中的非线性映射。同态滤波的目的是消除不均匀照度的影响而又不损失图象细节。频率域滤波是对图像进行傅里叶变换,将图像由图像空间转换到频域空间,然后在频率域中对图像的频谱作分析处理,以改变图像的频率特征。包含下面5个步骤:step1:图像进行ln变换;step2:ln变换后的图像进行FFT变换;step3:FFT变换后的图像进行同态因子卷积运算;step4:FFT逆运算;step5:上述图像指数exp运算。原创 2023-07-25 22:41:28 · 333 阅读 · 0 评论