归并操作(merge),也叫归并算法,指的是将两个已经排序的序列合并成一个序列的操作。归并排序算法依赖归并操作。
递归法(Top-down)
1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2.设定两个指针,最初位置分别为两个已经排序序列的起始位置
3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
4.重复步骤3直到某一指针到达序列尾
5.将另一序列剩下的所有元素直接复制到合并序列尾
void mergetwoarray(vector<int> nums1,int m,vector<int> nums2,int n,vector<int> &nums){
int i=0,j=0;
while(i<m&&j<n){
if(nums1[i]<nums2[j])
nums.push_back(nums1[i++]);
else
nums.push_back(nums2[j++]);
}
while(i<m)
nums.push_back(nums1[i++]);
while(j<n)
nums.push_back(nums2[j++]);
}
归并排序
分治法
解决了上面的合并有序数列问题,再来看归并排序,其基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。
如何让这二组组内数据有序了?
可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。
这样通过先递归的分解数列,再合并数列就完成了归并排序。
void mergearray(vector<int>& nums,int first,int mid,int last){
vector<int> temp;
int i=first,j=mid+1;
while(i<=mid&&j<=last){
if(nums[i]<nums[j])
temp.push_back(nums[i++]);
else
temp.push_back(nums[j++]);
}
while(i<=mid)
temp.push_back(nums[i++]);
while(j<=last)
temp.push_back(nums[j++]);
for(int i=0;i<temp.size();i++){
nums[first+i]=temp[i];
}
}
void mergesort(vector<int>& nums,int first,int last){
if(first<last){
int mid=(first+last)/2;
mergesort(nums,first,mid);
mergesort(nums,mid+1,last);
mergearray(nums,first,mid,last);
}
}