神经网络基础部件-激活函数详解

本文深入探讨了激活函数在神经网络中的作用,包括Sigmoid、ReLU及其变体的原理、性质和优缺点。Sigmoid函数虽在隐藏层中较少使用,但在二分类问题的输出层仍有应用。ReLU因其计算简单和稀疏性而广泛使用,但存在“死亡”问题,为解决此问题出现了Leaky ReLU、PReLU和ELU等变体。Swish函数作为一种自门控激活函数,提供了一种介于线性与ReLU之间的非线性选择。
摘要由CSDN通过智能技术生成

本文分析了激活函数对于神经网络的必要性,同时讲解了几种常见的激活函数的原理,并给出相关公式、代码和示例图。

一,激活函数概述

1.1,前言

人工神经元(Artificial Neuron),简称神经元(Neuron),是构成神经网络的基本单元,其主要是模拟生物神经元的结构和特性,接收一组输入信号并产生输出。生物神经元与人工神经元的对比图如下所示。

neuron

从机器学习的角度来看,神经网络其实就是一个非线性模型,其基本组成单元为具有非线性激活函数的神经元,通过大量神经元之间的连接,使得多层神经网络成为一种高度非线性的模型。神经元之间的连接权重就是需要学习的参数,其可以在机器学习的框架下通过梯度下降方法来进行学习。

深度学习一般指的是深度神经网络模型,泛指网络层数在三层或者三层以上的神经网络结构。

1.2,激活函数定义

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式视觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值