冷暖色区分

不同的色彩可以使人产生不同的心理感受:

1.暖色与冷色:

红色、橙色、黄色–为暖色,象征着:太阳、火焰。
绿色、兰色、黑色–为冷色,象征着:森林、大海、蓝天。
灰色、紫色、白色–为中间色;
冷色调的亮度越高–越偏暖,暖色调的亮度越高–越偏冷。

2.兴奋与沉静:

红色和明亮的黄色调成的橙色–给人活泼、愉快、兴奋的感受。青色、青绿色、青紫色–让人感到安静、沉稳、塌实。

3.前进与后退:

色彩可以使人有距离上的心理感觉。黄色有突出背景向前的感觉,青色有缩入的感觉;其排列如下:红色 > 黄色≈橙色 > 紫色 > 绿色 > 青色;
暖色为前进色–膨胀、亲近、依偎的感觉。色彩明亮–前进!
冷色为后退色–镇静、收缩、遥远的感觉。色彩暗 –后退!
在家庭装修中,面积较小的房间要选用”暗色调的地板”;使人有面积扩大的感觉。如果选用明亮色彩的地板就会显得空间狭窄,增加压抑感。

4.轻与重:

色彩可以给人带来”轻与重”的感觉;白色和黄色给人感觉较轻,而红色和黑色给人感觉较重。在家装中,居室的顶部(天花)易选用浅颜色或较亮的色调;而墙和地面可适当加重,否则给人头重脚轻的感觉。 5.柔和与强硬:
暖色感觉柔和、柔软,冷色给人坚实、强硬;中性为过度色。

### Matplotlib调板使用教程 Matplotlib提供了多种方式来应用不同的颜映射方案,即所谓的调板。这些调板可以分为连续型(适用于数值范围)、离散型(适合分类变量),还有发散型(用于展示正负差异)。对于希望调整可视化效果的人来说,了解如何配置和利用这些资源至关重要。 #### 基本概念介绍 在Matplotlib中,`cmap`参数通常用来指定色彩映射表,而Seaborn库则引入了更灵活的`palette`选项[^2]。两者都能有效控制图形元素的颜表现形式。下面是一些常见的内置调板及其变体: - `vlag`, `icefire`: 发散型调板,适合作为热力图背景。 - `Spectral`, `coolwarm`: 同样属于发散型,但在某些应用场景下可能提供更好的对比度。 - `_r`后缀版本:代表反转后的原版调板,可用于实现相反方向上的渐变效果。 #### 实际操作案例 为了更好地理解上述理论部分的内容,现在通过具体例子来看一看实际的应用场景吧! ##### 创建不同类型的调板并应用于热力图 ```python import numpy as np import matplotlib.pyplot as plt import seaborn as sns fig = plt.figure(figsize=(16,8)) fig.subplots_adjust(wspace=0.2, hspace=0.25) palettes = ["vlag", "icefire", "Spectral", "coolwarm"] palettes += [pat+"_r" for pat in palettes] data = np.random.rand(10,10)*2-1 for i, palette in enumerate(palettes): ax = fig.add_subplot(2, 4, i+1) sns.heatmap(data, cmap=palette) # 应用选定的调板 ax.set_title(palette) plt.show() ``` 这段代码展示了四种预设调板(`vlag`,`icefire`,`Spectral`,`coolwarm`)以及它们各自反向版本的效果。每种风格都赋予了数据独特的视觉解读角度。 ##### 自定义调板实例 除了直接选用现成的名字外,还可以借助`sns.diverging_palette()`来自定义新的配方案。这使得开发者能够更加精准地满足项目需求。 ```python custom_pal = sns.diverging_palette(h_neg=240, h_pos=10, s=99, l=55, n=7) sns.palplot(custom_pal) plt.show() ``` 此段脚本创建了一个具有明显冷暖区分的新调板,并将其绘制出来供查看[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值