线性代数相关基础知识自查

MIT线性代数笔记–Part_1

     趁着疫情期间,补上了MIT的线性代数课,老人家讲的确实很棒,循序渐进也没有讲稿,标准的老教授式讲法,很有水平,个人水平有限,天生做不了MIT的学生也是有原因的。。。有时候会跟不上他的思维,好在视频可以回放,经过一段时间的突击后,对线性代数有了一些思维上的新理解,本部分作为笔记记录下来,方便以后一些概念的查找。

                       (---------------个人水平有限,如有纰漏还望指正---------------)
    

关于矩阵的基本运算

    矩阵的基本运算无外乎加法、乘法、数乘运算、转置、求逆这几种方法,此处我想着重表达的是对于矩阵的行列图以及乘法的一些理解。

矩阵的行图和列图

     对于一个简单的线性方程组
{ 2 x − y = 0 − x + 2 y = 3 \left\{\begin{aligned} 2x-y &=0 \\-x+2y &= 3 \end{aligned}\right. {2xyx+2y=0=3
     对于其行图像: 我们可以将两个方程在平面直角坐标系之上分别绘制图像,上述例子即为2条直线,就是我们课本中学过的两个直线联立,方程的解即为交点。
                                        在这里插入图片描述

矩阵的行图像表示形式

    
     对于其列图像: 我们可以将它表示成AX=b的形式,提取系数矩阵。实际上这个式子的意思就是通过寻求系数矩阵列 Col1 和 Col2 的某种线性组合,找到一组合适的 x x x y y y使得组合成立。对于具体的AX=b的讨论我们放在后面的内容中。
( 2 − 1 − 1 2 ) ∗ ( x y ) = ( 0 3 ) ⟶ ( 2 − 1 ) x + ( − 1 2 ) y = ( 0 3 ) \begin{pmatrix} 2&-1\\ -1&2\end{pmatrix}*\begin{pmatrix} x\\y \end{pmatrix}=\begin{pmatrix} 0\\3 \end{pmatrix} \longrightarrow \begin{pmatrix} 2\\ -1\end{pmatrix}x+\begin{pmatrix} -1\\ 2\end{pmatrix}y=\begin{pmatrix} 0\\3 \end{pmatrix} (2112)(xy)=(03)(21)x+(12)y=(03)
                                   在这里插入图片描述

矩阵的列图像表示形式
    

     个人认为,MIT的这个整个课程中,Gilbert Strang教授的列表示思想贯穿始末,可以帮助我们更好的建立其矩阵空间的概念,而不是像本科和硕士期间学习线性代数和矩阵论时只为了考试的做题思想。

矩阵的4+1种乘法运算

     此处的4+1种运算是将分块矩阵的运算与常规矩阵乘法运算分离开来。以下分别赘述:

1. 行×列的求法:
     两个矩阵行×列,求出的是解矩阵中的各个点,也就是最常规的矩阵乘法。

2. 矩阵×行的求法:
     两个矩阵相乘,第一个矩阵×第二个矩阵的各行,求出的是第二个矩阵各行按照第一个矩阵行中元素的线性组合,作为解矩阵中的行。
     举例拆解如下:可直观看出个各行的线性组合构成了最终的解矩阵。
( 2 − 1 1 2 ) ∗ ( x 1 x 2 y 1 y 2 ) = ( 2 ∗ ( x 1 x 2 ) − 1 ∗ ( y 1 y 2 ) 1 ∗ ( x 1 x 2 ) + 2 ∗ ( y 1 y 2 ) ) \begin{pmatrix} 2&-1\\ 1&2\end{pmatrix}*\begin{pmatrix} x_1&x_2\\y_1&y_2 \end{pmatrix}= \begin{pmatrix} 2*\begin{pmatrix} x_1&x_2 \end{pmatrix}-1*\begin{pmatrix} y_1&y_2 \end{pmatrix}& \\ 1*\begin{pmatrix} x_1&x_2 \end{pmatrix}+2*\begin{pmatrix} y_1&y_2 \end{pmatrix}& \end{pmatrix} (2112)(x1y1x2y2)=(2(x1x2)1(y1y2)1(x1x2)+2(y1y2))
3. 矩阵×列的求法:
     两个矩阵相乘,第一个矩阵×第二个矩阵的各列,求出的是第一个矩阵各列按照第二个矩阵列中的元素的线性组合,作为解矩阵中的列。
     举例拆解如下:可直观看出个各列的线性组合构成了最终的解矩阵。
( 2 − 1 1 2 ) ∗ ( x 1 x 2 y 1 y 2 ) = ( ( 2 1 ) x 1 + ( − 1 2 ) y 1 ( 2 1 ) x 2 + ( − 1 2 ) y 2 ) \begin{pmatrix} 2&-1\\ 1&2\end{pmatrix}*\begin{pmatrix} x_1&x_2\\y_1&y_2 \end{pmatrix}= \begin{pmatrix} \begin{pmatrix} 2\\1 \end{pmatrix}x_1+\begin{pmatrix} -1\\2 \end{pmatrix}y_1 & \begin{pmatrix} 2\\1 \end{pmatrix}x_2+\begin{pmatrix} -1\\2 \end{pmatrix}y_2 \end{pmatrix} (2112)(x1y1x2y2)=((21)x1+(12)y1(21)x2+(12)y2)
4. 列×行的求法:
     两个矩阵列×行,对应行×对应列(不可交叉乘),获得的解是一个矩阵,将所有获得的矩阵相加就是解矩阵。
     举例拆解如下:可直观看出个各矩阵的线性组合构成了最终的解矩阵。
( 2 − 1 1 2 ) ∗ ( x 1 x 2 y 1 y 2 ) = ( 2 1 ) ( x 1 x 2 ) + ( − 1 2 ) ( y 1 y 2 ) = ( 2 x 1 − y 1 2 x 2 − y 2 x 1 + 2 y 1 x 2 + 2 y 2 ) \begin{pmatrix} 2&-1\\ 1&2\end{pmatrix}*\begin{pmatrix} x_1&x_2\\y_1&y_2 \end{pmatrix}= \begin{pmatrix} 2\\1 \end{pmatrix}\begin{pmatrix} x_1&x_2 \end{pmatrix}+ \begin{pmatrix} -1\\2 \end{pmatrix}\begin{pmatrix} y_1&y_2 \end{pmatrix}= \begin{pmatrix} 2x_1-y_1&2x_2-y_2\\ x_1+2y_1&x_2+2y_2\end{pmatrix} (2112)(x1y1x2y2)=(21)(x1x2)+(12)(y1y2)=(2x1y1x1+2y12x2y2x2+2y2)
5. 分块矩阵的乘法:
     分块矩阵的乘法满足上述4种的全部规则,可以先计算整体,再计算局部。

矩阵的转置与置换

① 关于矩阵的转置有几个有意思的性质:

1.  矩阵的转置就是A->AT,本身的定义并无什么大的变化, ( A i , j ) T = A j , i (A_{i,j})^T=A_{j,i} (Ai,j)T=Aj,i,当多个矩阵相乘时在括号外有转置,打开括号的时候要逆向相乘。 ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
2.  一个矩阵乘其转置等于一个对称矩阵,对称矩阵的转置是其本身。 ( A A T ) T = A A T (AA^T)^T=AA^T AATT=AAT

② 关于置换(permutation)矩阵:

通俗定义: 置换矩阵是一个每一行/每一列都只有1个1的矩阵,称为P矩阵。置换矩阵可以看做是行重新排列的单位矩阵。

1.  置换矩阵的转置等于其逆矩阵 P − 1 = P T P^{-1}=P^T P1=PT。(这个性质是很有用的) P P T = P P − 1 = E PP^T=PP^{-1}=E PPT=PP1=E
2.  判断一个方阵有多少个置换矩阵,就是该方阵阶数的阶乘个,3*3矩阵有3!=6个 P P P 矩阵

矩阵求逆

矩阵求逆的前提是矩阵可逆,最常用的也是公认的是高斯-约当法(Gauss-Jordan)求矩阵的逆。

Eg_1:  求取 A A A矩阵的逆,首先将 A A A 矩阵与 E E E 矩阵拼接成 A ∣ E A|E AE ,对该扁矩阵进行初等变换(行变换左乘初等矩阵,列变换右乘初等矩阵)当 A A A 矩阵变换成 E E E 矩阵时, A ∣ E A|E AE 则变成了 E ∣ A − 1 E|A^{-1} EA1 以此求得逆矩阵。

     高斯约当法能成功的关键就在于其采用初等变换,仅以行变换为例 E s ( A ∣ E ) = E ∣ A − 1 E_s(A|E)=E|A^{-1} Es(AE)=EA1,所以 E s A = E E_s A=E EsA=E E s E_s Es其实就是 A − 1 A^{-1} A1 拼接上的 E E E 矩阵恰好记录了变化的过程。

矩阵分解初探–LU分解

     矩阵的LU分解是可逆矩阵,分解为一个下三角矩阵L和一个上三角矩阵U相乘的形式,也可以将其分解成一个下三角矩阵L乘对角矩阵D乘上三角矩阵U的 A = L D U A=LDU A=LDU的形式。
其分解前提就是A一定是可逆方阵。
消元过程中不能有0主元出现,也就是消元过程中不能出现行交换的初等变换。
当一定要进行行变换时,需要把A = LU变成 PA = LU,其中P是置换矩阵。实际上所有的A = LU都可以写成PA = LU的形式,当A没有行互换时,P就是单位矩阵。由于 P − 1 = P T P^{-1} = P^T P1=PT
所以 A = P − 1 L U = P T L U A = P^{-1}LU = P^TLU A=P1LU=PTLU
LU分解的本质过程就是矩阵A的消元过程。
U = E s A U=E_sA U=EsA 其中 E s E_s Es 表示一堆初等变换矩阵的乘积。 L = E s − 1 L=E_s^{-1} L=Es1在这里插入图片描述
     矩阵的LU分解主要意义是在于计算机求解大型方程组,平时我们学的消元法和增广矩阵解方程组的方法并不适用于计算机求解大型矩阵。

秩1矩阵分解

     秩1矩阵就是无论从行空间看还是从列空间看都是秩为1的矩阵,每一个秩1矩阵都可以表示成一个列向量与一个行向量相乘的形式。
A = [ 1 3 5 2 6 10 ] = [ 1 2 c u ] ⏟ u [ 1 3 5 ] ⏟ v T = u v T A=\left[\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 6 & 10 \end{array}\right]= \underbrace{\left[\begin{array}{c} 1 \\2 \\c \\u \end{array}\right]}_{u} \underbrace{\left[\begin{array}{ccc} 1 & 3 & 5 \end{array}\right]}_{v^{T}}=u v^{T} A=[1236510]=u 12cuvT [135]=uvT

     在课程中说秩一矩阵可以作为积木构成任意秩的矩阵,比如说4个秩一矩阵可以构造一个秩4的矩阵。
     关于秩一矩阵目前就只了解到这里,等后续再有再行补充。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值