线性代数相关基础知识自查-Part2

MIT线性代数笔记–Part_2

     趁着疫情期间,补上了MIT的线性代数课,老人家讲的确实很棒,循序渐进也没有讲稿,标准的老教授式讲法,很有水平,个人水平有限,天生做不了MIT的学生也是有原因的。。。有时候会跟不上他的思维,好在视频可以回放,经过一段时间的突击后,对线性代数有了一些思维上的新理解,本部分作为笔记记录下来,方便以后一些概念的查找。

                       (---------------个人水平有限,如有纰漏还望指正---------------)
    

关于空间

向量空间:一个由向量构成的空间。(eg:R2表示为二维实数向量空间)
任何一个向量空间必须满足以下两点:
1.  任何一个向量空间中必须含有 零向量
2.  向量空间必须对线性组合 (数乘、加减法)封闭

矩阵空间: 由矩阵构成的空间,其维数由空间维数和最小单元的矩阵阶数共同决定。
就是说一个由 3 ∗ 3 3*3 33矩阵构成的三维矩阵空间实际上的维数是9维。
矩阵空间中依旧满足上述两个条件。

关于生成 / 张成 空间:

  • 就是将一个向量组(或矩阵)中所有线性无关的结果(列)放在一个空间中,该空间的维度取决于无关向量的个数。
  • 既能生成空间,又线性无关的向量组可以叫做 "基"
  • n ∗ n n*n nn矩阵可逆,就可以构成一个 R n R^n Rn空间。所以空间的维度其实就是基向量的个数。

何为子空间?

以一个例子来说明子空间:

R 2 R^2 R2是一个实数向量空间,一条直线 D E DE DE穿过原点,在 R 2 R^2 R2中具备以下性质:
直线 D E DE DE过原点,包含零向量;在直线 D E DE DE上的所有向量的加减法、数乘均封闭。
则称直线 D E DE DE R 2 R^2 R2的一个子空间。
相同的直线 G F GF GF首先不经过原点,不包含零向量,故不是 R 2 R^2 R2的一个子空间。

               在这里插入图片描述
     仅对于一个空间我们才可以说其维数,其实平时表述中的X维矩阵是不准确的,应该说的矩阵的列空间是X维的。
R 2 R^2 R2有3个子空间:① R 2 R^2 R2本身。 ②任何一个过原点的直线。③零点向量。
R 3 R^3 R3有4个子空间:① R 2 R^2 R2本身。 ②任何一个过原点的平面。③任何一个过原点的直线。④零点向量。
依此类推。。。。。。。。

     此处的应用就是给定一个矩阵,用其构造一个子空间,一个 N N N 阶矩阵 A A A 能否构成一个 R N R^N RN空间,该问题可以转化为, A X = b AX=b AX=b 这一个式子是否对于给定任意b均有解的问题。此处就将向量空间拓展至方程的解空间。
Eg.  A = ( 1 1 2 2 1 3 3 1 4 4 1 5 ) A=\begin{pmatrix} 1&1&2\\ 2&1&3\\ 3&1&4\\ 4&1&5 \end{pmatrix} A=123411112345 其列空间是否可以构成一个 R 4 R^4 R4空间?
首先直接可以回答不能,因为该矩阵列空间最大是3维,且需各列线性无关,题中矩阵显然不满足该条件,故最大只能构成 R 2 R^2 R2空间,就是4维空间内的一个过原点的平面。
该问题可以转化为线性方程组求解解空间的问题, ( 1 1 2 2 1 3 3 1 4 4 1 5 ) ( x 1 x 2 x 3 ) = ( b 1 b 2 b 3 b 4 ) \begin{pmatrix} 1&1&2\\ 2&1&3\\ 3&1&4\\ 4&1&5 \end{pmatrix}\begin{pmatrix} x_1\\ x_2\\x_3\end{pmatrix}=\begin{pmatrix} b_1\\ b_2\\b_3\\b_4\end{pmatrix} 123411112345x1x2x3=b1b2b3b4,是否对于任意 b b b都有解(可以构成 R 4 R^4 R4空间,即为方阵且满秩),或者说要怎样的 b b b才能是的方程有解?(即超定方程与欠定方程的解,本例为超定,4个方程3个未知数),本例中当且仅当, b b b向量属于A的列空间时才有解。所以 A A A R 4 R^4 R4中的一个二维子空间。

何为4个基本空间?

     在听MIT的线性代数之前,我是不知道这四个子空间的存在的。。。这个很惭愧,也不知道本科的线性代数自己学了个啥,不能怪老师没教好,肯定是我没听。
     四个基本子空间说的是:
     列空间 C ( A ) C(A) C(A) ,零空间 N ( A ) N(A) N(A) ,行空间 C ( A T ) C(A^T) C(AT) ,转置的零空间(也叫左零空间) N ( A T ) N(A^T) N(AT);

     1、列空间 C ( A ) C(A) C(A):由矩阵 A A A 中的所有列张成的空间为 A A A 的列空间。
     2、零空间 N ( A ) N(A) N(A) A X = 0 AX=0 AX=0 型方程组的全部解为 A A A 的零空间。
     3、行空间 C ( A T ) C(A^T) C(AT):由矩阵 A A A 中的所有行张成的空间为 A A A 的行空间。
     4、左零空间 N ( A T ) N(A^T) N(AT) A T X = 0 A^TX=0 ATX=0 型方程组的全部解为 A A A 的左零空间。

                         在这里插入图片描述
     由图中可以看出这4个基本子空间在一个 m ∗ n m*n mn的矩阵中分成了两组,也就是说一个矩阵构成的 n n n维空间或者 m m m维空间都可以划分为上述两种子空间,且同组的子空间是相互垂直的。

向量空间与方程组之间的联系

     原本这两部分是分开介绍的,其中混合了以秩作为桥梁的方程解与空间维度之间的关系,所以一起整理一下。

AX=0型方程组(齐次线性方程组)

     前述中说过,其实求解 A X = 0 AX=0 AX=0 型方程组就是在求 A A A 的零空间的过程。如果A中各列线性相关,则零空间内除了零向量以外还有其他通解,若 A A A 中线性无关,则零空间内仅存在零向量。

AX=b型方程组(非齐次线性方程组)

     求解 A X = b AX=b AX=b 型方程组就是在求一个 b b b 恰好位于 A A A 的列空间。一般来说 b b b不为0,所以解中也不包含零向量,仅分为自由解与通解,也就不能构成一个子空间。

AX=0型方程组的解法

     常规方程组的解法是拿到一个方程组后先将其写成稀疏矩阵与自变量相乘的过程,即 A X = b AX=b AX=b的形式,其中 b b b是否可取为零将导致不同的解法,首先我们来看齐次线性方程组的解法,也就是 b = 0 b=0 b=0 的情况。

     化为简化行阶梯型矩阵(Reduced rowechelon form 此处称为 R R R 矩阵)后,在其中挑选主元元素,剩下的是自由项,主元个数就是矩阵的秩 r r r。自由项的个数是 n − r n-r nr
自由项可以看做是主列的线性组合而来的。
A X = 0 → U X = 0 → R X = 0 AX=0 \to UX=0 \to RX=0 AX=0UX=0RX=0
     最简行阶梯型的一个特点就是尽量将矩阵化成主元为1的矩阵,之后通过行变换,在方程中其实行变化就是方程的位置变换,对结果无影响,将一个 R R R 矩阵划分为 主元矩阵 I I I自由项矩阵 F F F
R = ( 1 2 0 − 2 0 0 1 2 0 0 0 0 ) → ( 1 0 ∣ 2 − 2 0 1 ∣ 0 2 − − − − − 0 0 ∣ 0 0 ) → ( I r ∗ r F r ∗ n − r 0 0 ) R=\begin{pmatrix} 1&2&0&-2 \\ 0&0&1&2 \\ 0&0&0&0 \end{pmatrix} \to \begin{pmatrix} 1&0&|&2&-2 \\ 0&1&|&0&2 \\-&-&-&-&-\\ 0&0&|&0&0 \end{pmatrix} \to \begin{pmatrix} I_{r*r} &F_{r*n-r} \\ 0&0 \end{pmatrix} R=100200010220100010200220(Irr0Frnr0)
由这个例子可以看出这个 R R R矩阵中含有主元2个,自由变量2个,其列数 n = 4 n=4 n=4
     要求的 R X = 0 RX=0 RX=0 也就转化为了求解零空间的过程。
( I r ∗ r F r ∗ n − r 0 0 ) ∗ ( − F r ∗ n − r I n − r ) = ( 0 ) 1 ∗ n \begin{pmatrix} I_{r*r} &F_{r*n-r} \\ 0&0 \end{pmatrix}* \begin{pmatrix} -F_{r*n-r} \\ I_{n-r} \end{pmatrix}=\begin{pmatrix} 0 \end{pmatrix}_{1*n} (Irr0Frnr0)(FrnrInr)=(0)1n
所以方程的解也就是 ( − F r ∗ n − r I n − r ) \begin{pmatrix} -F_{r*n-r} \\ I_{n-r} \end{pmatrix} (FrnrInr)的组合。

此处注意解中的 ( I n − r ) \begin{pmatrix} I_{n-r} \end{pmatrix} (Inr)与前面分解出来的单位矩阵并无关联,其阶数由自由项的个数确定。

举个例子,要求取 A = ( 1 2 3 2 4 6 2 6 8 2 8 10 ) A=\begin{pmatrix} 1&2&3 \\ 2&4&6 \\ 2&6&8\\2&8&10 \end{pmatrix} A=1222246836810为稀疏矩阵的 A X = 0 AX=0 AX=0的方程组的通解。
首先将 A A A矩阵化为 R R R矩阵, R = ( 1 0 1 0 1 1 0 0 0 0 0 0 ) R=\begin{pmatrix} 1&0&1 \\ 0&1&1 \\ 0&0&0\\0&0&0 \end{pmatrix} R=100001001100易知其秩为2
可按格式划分其主元矩阵 I = ( 1 0 0 1 ) I=\begin{pmatrix} 1&0 \\ 0&1\end{pmatrix} I=(1001),自由项矩阵 F = ( 1 1 ) F=\begin{pmatrix} 1 \\ 1\end{pmatrix} F=(11),所以按照前述格式可以得到其零空间的解为 ( − F r ∗ n − r I n − r ) \begin{pmatrix} -F_{r*n-r} \\ I_{n-r} \end{pmatrix} (FrnrInr),也就是 ( − 1 − 1 1 ) \begin{pmatrix} -1 \\ -1\\ 1 \end{pmatrix} 111,现在也就求得可该空间内的一个特解,可知其零空间内的所有解,为该特解的线性组合,所以最终可知 X = c ( − 1 − 1 1 ) X=c\begin{pmatrix} -1 \\ -1\\ 1 \end{pmatrix} X=c111

AX=b型方程组的解法

     前述说过 A X = b AX=b AX=b 若有解,则说明 b b b 是位于 A A A 矩阵的列空间中,以前我们也学过,非齐次线性方程组的解等于齐次线性方程组的通解加上一个非齐次线性方程组的特解,其实此处的几何意义就是 A X = 0 AX=0 AX=0型的方程最终的解空间就是一个过原点的空间,而 A X = b AX=b AX=b型方程组的解空间是一个过 b b b 向量的空间,也就理解了结的结构中为什么需要有一个特解。
{ A X N = 0 A X P = b ⇒ A ( X N + X P ) = b \left\{\begin{aligned}AX_N&=&0 \\AX_P&=&b \\\end{aligned}\right. \quad \Rightarrow \quad A(X_N+X_P)=b {AXNAXP==0bA(XN+XP)=b

     解 A X = b AX=b AX=b型方程组,通解的求法与解 A X = 0 AX=0 AX=0一致,特解的求法就将 b b b代入到系数矩阵中,生成增广矩阵 ( A ∣ b ) (A|b) (Ab),再将该增广矩阵变化为上三角矩阵( U U U 矩阵),此处增广矩阵中的 b b b 一般无法消除,所以也就没必要化成 R R R 矩阵,将自有变量设为0,最终求得一个增广矩阵的特解。与通解相组合,最终得到 A X = b AX=b AX=b 的全部解。

广泛化总结

     对于一个 m ∗ n m*n mn的矩阵 A A A,其秩为 r r r,必有 r ≤ n r≤n rn 。在满秩情况下, A A A矩阵的零空间就只有零向量。对于 A X = b AX=b AX=b 也只有一个唯一特解,也就是我们俗称的方程有解,其 R = I R=I R=I,且可逆。
    
1、 \quad r = n = m r=n=m r=n=m 时, R = I R=I R=I 方程有一个解。
2、 \quad r = n < m r=n<m r=nm 时, R = ( I 0 ) R=\begin{pmatrix} I \\ 0 \end{pmatrix} R=(I0) 方程有 1个或0 个解。
3、 \quad r = m < n r=m<n r=mn 时, R = ( I ∣ F ) R=\begin{pmatrix} I | F \end{pmatrix} R=(IF) 方程有无穷多个解。

4、 \quad r < m ∪ r < n r<m ∪r<n rmrn 时, R = ( I r ∗ r F r ∗ n − r 0 0 ) R=\begin{pmatrix} I_{r*r} &F_{r*n-r} \\ 0&0 \end{pmatrix} R=(Irr0Frnr0) 方程有1个或无穷多个解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值