题意:首先每次只能交换相邻的两头牛,并且最后要求升序排列,所以最后整个序列的逆序是0,每次交换只可以消除1个逆序。(令a[i]的逆序是从1到i-1比它大的数的个数。)
思路:对于某个数,要把它变成有序的,那么很容易可以推算出公式就是它自身的逆序数乘自身的值再加上它的逆序数的和,自己算算看看。
吐槽:一开始没想清楚树状数组下标的问题,后来没注意会爆int搞了好久...
#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <string>
#include <set>
#include <ctime>
#include <cmath>
#include <cctype>
using namespace std;
#define maxn 100000+100
#define LL long long
int cas=1,T;
int a[maxn];
LL L[maxn];
LL c[maxn];
int lowbit(int x)
{
return x&(-x);
}
LL sum(int i)
{
LL ans = 0;
while (i)
{
ans +=c[i];
i-=lowbit(i);
}
return ans;
}
void add(int i,int d)
{
while (i<maxn)
{
c[i]+=d;
i+=lowbit(i);
}
}
int main()
{
int n;
while (scanf("%d",&n)!=EOF && n)
{
memset(L,0,sizeof(L));
memset(c,0,sizeof(c));
for (int i = 1;i<=n;i++)
{
scanf("%d",&a[i]);
L[i]=sum(maxn)-sum(a[i]);
add(a[i],1);
// printf("%d ",L[i]);
}
memset(c,0,sizeof(c));
LL ans = 0;
for (int i = 1;i<=n;i++)
{
LL temp = a[i]*L[i];
ans+= temp+sum(a[i]);
add(a[i],a[i]);
}
printf("%lld\n",ans);
}
//freopen("in","r",stdin);
//scanf("%d",&T);
//printf("time=%.3lf",(double)clock()/CLOCKS_PER_SEC);
return 0;
}