LeetCode 629. K个逆序对数组(DP)

1. 题目

给出两个整数 n 和 k,找出所有包含从 1 到 n 的数字,且恰好拥有 k 个逆序对的不同的数组的个数。

逆序对的定义如下:对于数组的第i个和第 j个元素,如果满i < j且 a[i] > a[j],则其为一个逆序对;否则不是。

由于答案可能很大,只需要返回 答案 mod 109 + 7 的值。

示例 1:
输入: n = 3, k = 0
输出: 1
解释: 
只有数组 [1,2,3] 包含了从13的整数并且正好拥有 0 个逆序对。

示例 2:
输入: n = 3, k = 1
输出: 2
解释: 
数组 [1,3,2][2,1,3] 都有 1 个逆序对。
说明:
 n 的范围是 [1, 1000] 并且 k 的范围是 [0, 1000]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/k-inverse-pairs-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 动态规划

  • f ( i , j ) f(i,j) f(i,j)表示i个数,j个逆序对的组合方式种类
  • i个数的j个逆序对的组合,可以在i-1个数的基础上得到
  • 把第i个数插入到前面i-1i个空位上,相应的逆序数会变化
  • f(i - 1, j)插在最后,逆序增加0,插在倒数第1个前面,逆序数为1,为保持总逆序数j,那i-1个数的逆序数为j-1,依次类推
  • f ( i , j ) = f ( i − 1 , j ) + f ( i − 1 , j − 1 ) + . . . + f ( i − 1 , j − i + 1 ) f(i, j) = f(i - 1, j) + f(i - 1, j - 1) + ... + f(i - 1, j - i + 1) f(i,j)=f(i1,j)+f(i1,j1)+...+f(i1,ji+1)
class Solution {
public:
    int kInversePairs(int n, int k) {
        //f(i,j)表示i个数,j个逆序对的组合方式
        //f(i, j) = f(i - 1, j) + f(i - 1, j - 1) + ... + f(i - 1, j - i + 1)
        int dp[n+1][k+1] = {0};
        int i, j, time, idx;
        for(i = 1; i <= n; i++)
        	dp[i][0] = 1;
        for(i = 2; i <= n; i++)
        {
        	for(j = 1; j <= k; j++)
        	{
        		time = i;
        		idx = j;
        		while(time-- && idx >= 0)
        		{
        			dp[i][j] += dp[i-1][idx];
        			dp[i][j] %= 1000000007;
        			idx--;
        		}
        	}
        }
        return dp[n][k];
    }
};

时间复杂度 O ( k ∗ n 2 ) O(k*n^2) O(kn2)

在这里插入图片描述

3. 优化的DP

  • f ( i , j ) = f ( i − 1 , j ) + f ( i − 1 , j − 1 ) + . . . + f ( i − 1 , j − i + 1 ) f(i, j) = f(i - 1, j) + f(i - 1, j - 1) + ... + f(i - 1, j - i + 1) f(i,j)=f(i1,j)+f(i1,j1)+...+f(i1,ji+1)
  • 代入j=j-1到上式
  • f ( i , j − 1 ) = f ( i − 1 , j − 1 ) + f ( i − 1 , j − 2 ) + . . . + f ( i − 1 , j − i ) f(i, j-1) = f(i - 1, j-1) + f(i - 1, j - 2) + ... + f(i - 1, j - i) f(i,j1)=f(i1,j1)+f(i1,j2)+...+f(i1,ji)
  • 做差, f ( i , j ) − f ( i , j − 1 ) = f ( i − 1 , j ) − f ( i − 1 , j − i ) f(i, j)-f(i, j - 1) = f(i - 1, j) - f(i - 1, j - i) f(i,j)f(i,j1)=f(i1,j)f(i1,ji)
  • f ( i , j ) = f ( i , j − 1 ) + f ( i − 1 , j ) − f ( i − 1 , j − i ) f(i, j)=f(i, j - 1) +f(i - 1, j) - f(i - 1, j - i) f(i,j)=f(i,j1)+f(i1,j)f(i1,ji)
class Solution {
public:
    int kInversePairs(int n, int k) {
        int dp[n+1][k+1] = {0};
        int i, j, maxk, M = 1000000007;
        for(i = 1; i <= n; i++)
        	dp[i][0] = 1;
        for(i = 2; i <= n; i++)
        {
        	maxk = i*(i-1)/2;//最大的逆序数
        	for(j = 1; j <= k && j <= maxk; j++)
        	{
    			dp[i][j] = dp[i][j-1]%M + (M + dp[i-1][j]-(j>=i ? dp[i-1][j-i]:0))%M;
    			//dp[i-1][j] 不一定比 dp[i-1][j-i] 大(正态分布),+M防止负数
    			dp[i][j] %= M;
        	}
        }
        return dp[n][k];
    }
};

时间复杂度 O ( k ∗ n ) O(k*n) O(kn)
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Michael阿明

如果可以,请点赞留言支持我哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值