机器学习实战第二章——学习KNN算法,读书笔记

本文是关于机器学习实战中K-近邻(KNN)算法的学习笔记,详细介绍了如何从文本文件解析数据,并通过Python实现KNN算法。通过散点图对算法效果进行了直观展示。
摘要由CSDN通过智能技术生成
        K近邻算法(简称KNN)学习是一种常用的监督学习方法,给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息来进行预测。通常在分类任务中可以使用“投票法”,即选择这k个样本中出现最多的类别标记作为预测结果;在回归任务中可以使用“平均法”,即将这个k个样本的实值输出标记的平均值作为预测结果。
from numpy import *
import operator

def createDataSet():                                          #创建一个数据集
	group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])          #作为训练集的数据,该数据集有4个样本,每一个样本是一个二维坐标
	labels=['A','A','B','B']                                  #上面的样本数据所对应的标记
	return group,labels

def classify0(inX,dataSet,labels,k):                          #classify0()函数有4个输入参数,inX是用于分类的输入向量,dataSet是上面函数中的训练数据集,
                                                              #label是上面的训练数据集中的样本的标记,k是KNN选择的大小
	dataSetSize=dataSet.shape[0]                          #dataSetSize是上面的训练数据集的大小
	diffMat=tile(inX,(dataSetSize,1))-dat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值