关于二分图总结

标准二分图模型

比如N个人和 M样物品,每个人都有想要的,每个人只能拿一件,每样物品只有一件,求最大匹配,直接用匈牙利算法就可以。

最小点覆盖

选出尽量少的点集,使得所有的边都至少有一个端点在点集中。
König定理:
最小点覆盖=最大匹配数

最小边覆盖

选出尽量少的边,使得所有点都在边上。
最小边覆盖=总点数-最大匹配

最小不相交路径覆盖

DAG中选出尽量少的不相交路径,使得所有点都被选。
对图中每个点拆成两个点。
最小不相交路径覆盖=总点数-最大匹配

二分图的最大独立集

选出尽量多的点,使得这些点间没有边相连。
最大独立集=总点数-最大匹配

最小可相交路径覆盖

用floyd求出图的传递闭包,然后相连通的点连上边,其实作用相当于可以直接跳过中间点。
那么问题就转变成了最小不相交路径覆盖。
最小可相交路径覆盖=总点数-最大匹配

有向无环图,求最大不可到达的点集(对于集合中任意两点 u、v,不能从点 u 出发到达点 v)

最大不可到达的点集=最小可相交路径覆盖=总点数-最大匹配

如果每条边都有一个权值,要求在最大匹配的前提下,使得选的边的权值尽量大。
可以用KM算法,用最大流比较方便,每条边的权值对应着最大流图中相应边的流量。
匈牙利算法可以看成每条边流量都是1的最大流。

luogu 3386 匈牙利算法模板

#include<bits/stdc++.h>
using namespace std;
#define N 1100
#define M 1100000
struct edge{int n,o;}e[M];
int flag[N],fa[N],last[N];
int x,y,n,m,mm,w,ans;
void add(int x,int y){w++;e[w].n=last[x];last[x]=w;e[w].o=y;}
int xyl(int x){
	int w1,y;
	for(w1=last[x];w1;w1=e[w1].n){
		y=e[w1].o;
		if(flag[y]==0){
			flag[y]=1;
			if(fa[y]==0||xyl(fa[y])){
				fa[y]=x;
				return 1;
			}
		}
	}
	return 0;
}
int main(){
	scanf("%d%d%d",&n,&m,&mm);
	while(mm--){
		scanf("%d%d",&x,&y);
		if(x>n)continue;
		if(y>m)continue;
		add(x,y);
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++)flag[j]=0;
		if(xyl(i))ans++;
	}
	printf("%d\n",ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值