583. Delete Operation for Two Strings(python+cpp)

题目:

Given two words word1 and word2, find the minimum number of steps required to make word1 and word2 the same, where in each step you can delete one character in either string.
Example 1:

Input: "sea", "eat" 
Output: 2 
Explanation: You need one step to make "sea" to "ea" and another step to make "eat" to "ea".

Note:
The length of given words won’t exceed 500.
Characters in given words can only be lower-case letters.

解释:
可以对字符串执行删除字符操作,每次只能删除一个字符。最少需要多少步可以让两个字符串相等。
动态规划
与712. Minimum ASCII Delete Sum for Two Strings类似
dp[i][j]表示s1的前i个字符和s2的前j个字符所需要进行操作的最小值
其实这道题目也可以用lcs(subsequence)做,参考718. Maximum Length of Repeated Subarray(python+cpp)对lcs(subsequence的介绍)
python代码:

class Solution(object):
    def minDistance(self, word1, word2):
        """
        :type word1: str
        :type word2: str
        :rtype: int
        """
        def lcsubsequence(A, B):
            m=len(A)
            n=len(B)
            dp=[[0]*(n+1) for _ in range(m+1)]
            for i in range(1,m+1):
                for j in range(1,n+1):
                    if A[i-1]==B[j-1]:
                        dp[i][j]=dp[i-1][j-1]+1
                    else:
                        dp[i][j]=max(dp[i][j-1],dp[i-1][j])
            return dp[m][n]
        m=len(word1)
        n=len(word2)
        if m==0 and n==0:
            return 0
        elif m==0:
            return n
        elif n==0:
            return m
        else:
            return m+n-2*lcsubsequence(word1,word2)

c++代码:

class Solution {
public:
    int minDistance(string word1, string word2) {
        int m=word1.size(),n=word2.size();
        if (m==0 && n==0)
            return 0;
        else if(m==0)
            return n;
        else if(n==0)
            return m;
        return m+n-2*lcsubsequence(word1,word2);
    }
    int lcsubsequence(string A,string B)
    {
        int m=A.size();
        int n=B.size();
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));
        for (int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if (A[i-1]==B[j-1])
                {
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else
                    dp[i][j]=max(dp[i-1][j],dp[i][j-1]);    
            }
        }
        return dp[m][n];
    }
};

总结:
注意,如果求的是lcsubarray,则需要用一个maxLen来记录当前最长的子串的长度,如果求的是lcsubsequence,则不需要用maxLen,直接返回dp[m][n]即可,当然用maxLen记录也不错,因为最后一定会遍历到dp[m][n]的,只是比较大小和更新的时候会浪费时间。

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值