
深度学习图像识别实战【1-10例】(内附源码)
文章平均质量分 92
基于深度学习的图像识别案例实现:
1. 基于LeNet的手写体数组识别;
2.基于AlexNet的猫狗分类;
3.基于VGG16的花朵识别;
4.基于Inceptionv3的天气情况识别;
5.基于ResNet18的交通标志识别;
......
AI学长
学习的快乐在于知识的分享,不分享的知识将会毫无意义
展开
-
第4例 基于卷积神经网络VGG的猫狗图像识别
VGG网络结构是牛津大学著名研究组VGG( Visual Geometry Group )在2014年提出的卷积神经网络结构,受AlexNet网络启发的,其探索卷积神经网络的深度和其性能之间的关系,优化方向**属于“网络加深”** 。原创 2022-04-05 22:22:37 · 6052 阅读 · 7 评论 -
第3例 基于卷积神经网络AlexNet的猫狗分类
第3例 基于卷积神经网络AlexNet的猫狗分类最近在积攒粉丝500,大家帮帮忙,动动小手指关注、点赞、收藏…🙏🙏🙏🙏🙏🙏第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,也就是文章《ImageNet Classification with Deep Convolutional Neural Networks》介绍的网络结构,它是2012年ImageNet挑战赛的冠军。一、AlexNet网络结构网络总共的层数为8层,5层卷积,3层全连接层,输出1000个类别;原创 2022-04-05 16:25:42 · 4139 阅读 · 0 评论 -
第2例 基于卷积神经网络LeNet的手写体数字识别
第2例 基于卷积神经网络LeNet的手写体数字识别卷积操作就是提取图像的边缘纹理特征的。卷积神经网络去做图像分类的思路非常简单,先使用卷积运算对图像进行边缘纹理特征提取,多层卷积即是提取深度特征的边缘纹理特征;卷积核是通过机器学习得到的,所以具体提取到什么样的纹理我们不必要去考究。思路: 卷积神经网络 = 提取特征(卷积层、池化) + 分类器(全连接层)1. 卷积神经网络LeNet的结构LeNet网络结构如下:相比全连接网络做分类图像,它多了一些卷积网络的层,如卷积层、池化层。LeNet的原创 2022-04-03 21:09:19 · 3150 阅读 · 4 评论 -
第1例 基于全连接网络的手写体数字MNIST识别
第1例:基于全连接网络的手写体数字MNIST识别1.1 环境说明Window10tensorflow2.x1.2 理论说明全连接网络,实质上是多层感知器,作为分类器出现在应用中。单层感知器是一个简单的线性分类器,能够处理线性二分类问题。多层感知器由单层感知器组合而成,能够处理非线性多分类问题。1.2.1 单层感知器结构如下:计算过程的理解:求和:s=w1∗x1+w2∗x2+...+w3∗x3s = w1*x1+w2*x2+...+w3*x3s=w1∗x1+w2∗x2+...+原创 2022-04-03 19:13:18 · 1580 阅读 · 2 评论