LeetCode第四题寻找两个有序数组的中位数(Python)

题目描述

给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:

nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0

示例 2:

nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题方法和思路

方法1(自己想到的菜鸡实现,时间复杂度 o ( m + n ) o(m+n) o(m+n)

虽然看到时间复杂度有 l o g log log,就想到了二分法,但是实在想不出来。。。
因为题目指出两个原本的列表为有序的列表,因此,合并成一个有序的列表的做法可以从两个列表的一段开始逐个比较,将较小的那个列表的元素放入结果列表存储,并且相应的索引向后挪动,时间复杂度为 o ( m + n ) o(m+n) o(m+n),合并以后找出中位数即可。
核心代码:

class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:   
        length_nums1 = len(nums1)
        length_nums2 = len(nums2)
        middle_index = (length_nums1 + length_nums2) / 2
        i = 0
        j = 0
        k = 0
        result = []
        while i<length_nums1 and  j<length_nums2:
            if nums1[i]>=nums2[j]:
                result.append(nums2[j])
                j += 1
            else:
                result.append(nums1[i])
                i += 1
        while i<length_nums1:
            result.append(nums1[i])
            i += 1
        while j<length_nums2:
            result.append(nums2[j])
            j += 1
        if int(middle_index) == middle_index:
            return (result[int(middle_index)-1] + result[int(middle_index)])/2
        else:
            return result[int(middle_index)]

在这里插入图片描述

方法2(LeetCode官方账号解答实现)

在统计中,中位数被用来:

将一个集合划分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。

如果理解了中位数的划分作用,我们就很接近答案了。
首先,让我们在任一位置 i i i A A A 划分成两个部分:

          left_A             |        right_A
    A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]

由于 A A A 中有 m m m 个元素,所以我们有 m + 1 m+1 m+1 种划分的方法 ( i = 0 ∼ m ) (i = 0 \sim m) (i=0m)
我们知道:

len(left_A)= i i i,len(right_A)= m − i m−i mi.
注意:当 i = 0 i=0 i=0 时,left_A 为空集, 而当 i = m i=m i=m 时, right_A 为空集。

采用同样的方式,我们在任一位置 j j j B B B 划分成两个部分:

          left_B             |        right_B
    B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

将 left_A 和 left_B 放入一个集合,并将 right_A 和 right_B 放入另一个集合。 再把这两个新的集合分别命名为 left_part 和right_part:

          left_part          |        right_part
    A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]
    B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

如果我们可以确认:

  1. len(left_part)=len(right_part)
  2. m a x max max(left_part) ≤ ≤ m i n min min(right_part)

那么,我们已经将 { A , B } \{ A,B \} {A,B} 中的所有元素划分为相同长度的两个部分,且其中一部分中的元素总是大于另一部分中的元素。那么:
m e d i a n = m a x ( l e f t _ p a r t ) + m i n ( r i g h r _ p a r t ) 2 median=\frac{max(left\_part) + min(righr\_part)}{2} median=2max(left_part)+min(righr_part)
要确保这两个条件,我们只需要保证:

  1. i + j = m − i + n − j i+j=m−i+n−j i+j=mi+nj(或: m − i + n − j + 1 m−i+n−j+1 mi+nj+1)
    如果 n ≥ m n \geq m nm,只需要使 i = 0 ∼ m i = 0 \sim m i=0m, j = m + n + 1 2 − i j = \frac {m + n + 1}{2} - i j=2m+n+1i
  2. B [ j − 1 ] ≤ A [ i ] B[j-1] \leq A[i] B[j1]A[i] 以及 A [ i − 1 ] ≤ B [ j ] A[i−1] \leq B[j] A[i1]B[j]

ps.1 为了简化分析,我假设 A [ i − 1 ] A[i−1] A[i1], B [ j − 1 ] B[j−1] B[j1], A [ i ] A[i] A[i], B [ j ] B[j] B[j] 总是存在,哪怕出现 i = 0 i=0 i=0 i = m i=m i=m j = 0 j=0 j=0,或是 j = n j=n j=n 这样的临界条件。
我将在最后讨论如何处理这些临界值。

ps.2 为什么 n ≥ m n \geq m nm?由于 0 ≤ i ≤ m 0 \leq i \leq m 0im j = m + n + 1 2 − i j = \frac{m + n + 1}{2} - i j=2m+n+1i,我必须确保 j j j 不是负数。如果 n < m n<m n<m,那么 j j j 将可能是负数,而这会造成错误的答案。

所以,我们需要做的是:

[ 0 , m ] [0,m] [0m]中搜索并找到目标对象 i i i,以使:
B [ j − 1 ] ≤ A [ i ] B[j−1] \leq A[i] B[j1]A[i] A [ i − 1 ] ≤ B [ j ] A[i−1] \leq B[j] A[i1]B[j], 其中 j = m + n + 1 2 − i j = \frac{m + n + 1}{2} - i j=2m+n+1i

接着,我们可以按照以下步骤来进行二叉树搜索:

  1. i m i n = 0 imin=0 imin=0 i m a x = m imax=m imax=m, 然后开始在 [ i m i n , i m a x ] [imin,imax] [imin,imax] 中进行搜索。
  2. i = i m i n + i m a x 2 i = \frac{imin+imax}{2} i=2imin+imax, j = n + m + 1 2 − i j=\frac{n+m+1}{2}-i j=2n+m+1i
  3. 现在我们有len(left_part)=len(right_part)。 而且我们只会遇到三种情况:
    - B [ j − 1 ] ≤ A [ i ] B[j−1] \leq A[i] B[j1]A[i] A [ i − 1 ] ≤ B [ j ] A[i−1] \leq B[j] A[i1]B[j]:
    这意味着我们找到了目标对象 i i i,所以可以停止搜索。
    - B [ j − 1 ] > A [ i ] B[j−1] > A[i] B[j1]>A[i]:
    这意味着 A [ i ] A[i] A[i] 太小,我们必须调整 ii 以使 B [ j − 1 ] ≤ A [ i ] B[j−1] \leq A[i] B[j1]A[i]
    我们可以增大 i i i 吗?
    是的,因为当 i i i 被增大的时候, j j j 就会被减小。
    因此 B [ j − 1 ] B[j−1] B[j1] 会减小,而 A [ i ] A[i] A[i] 会增大,那么 B [ j − 1 ] ≤ A [ i ] B[j−1] \leq A[i] B[j1]A[i] 就可能被满足。
    我们可以减小 i i i 吗?
    不行,因为当 i i i 被减小的时候, j j j 就会被增大。
    因此 B [ j − 1 ] B[j−1] B[j1] 会增大,而 A [ i ] A[i] A[i] 会减小,那么 B [ j − 1 ] ≤ A [ i ] B[j−1] \leq A[i] B[j1]A[i] 就可能不满足。
    所以我们必须增大 i i i。也就是说,我们必须将搜索范围调整为 [ i + 1 , i m a x ] [i+1,imax] [i+1,imax]
    因此,设 i m i n = i + 1 imin=i+1 imin=i+1,并转到步骤 2。
    - A [ i − 1 ] > B [ j ] A[i−1] > B[j] A[i1]>B[j]:
    这意味着 A [ i − 1 ] A[i−1] A[i1] 太大,我们必须减小 i i i 以使 A [ i − 1 ] ≤ B [ j ] A[i−1]\leq B[j] A[i1]B[j]
    也就是说,我们必须将搜索范围调整为 [ i m i n , i − 1 ] [imin,i−1] [imin,i1]
    因此,设 i m a x = i − 1 imax=i−1 imax=i1,并转到步骤 2。

当找到目标对象 i i i 时,中位数为:

m a x ( A [ i − 1 ] , B [ j − 1 ] ) max(A[i−1],B[j−1]) max(A[i1],B[j1]), 当 m + n m+n m+n 为奇数时

m a x ( A [ i − 1 ] , B [ j − 1 ] ) + m i n ( A [ i ] , B [ j ] ) 2 \frac{max(A[i-1],B[j-1])+min(A[i],B[j])}{2} 2max(A[i1],B[j1])+min(A[i],B[j]), 当 m + n m+n m+n为偶数时

现在,让我们来考虑这些临界值 i = 0 , i = m , j = 0 , j = n i=0,i=m,j=0,j=n i=0,i=m,j=0,j=n,此时 A [ i − 1 ] , B [ j − 1 ] , A [ i ] , B [ j ] A[i−1],B[j−1],A[i],B[j] A[i1],B[j1],A[i],B[j] 可能不存在。
其实这种情况比你想象的要容易得多。

我们需要做的是确保 m a x ( l e f t p a r t ) ≤ m i n ( r i g h t p a r t ) max(left_part) \leq min(right_part) max(leftpart)min(rightpart)。 因此,如果 i i i j j j 不是临界值(这意味着 A [ i − 1 ] , B [ j − 1 ] , A [ i ] , B [ j ] A[i−1],B[j−1],A[i],B[j] A[i1],B[j1],A[i],B[j] 全部存在), 那么我们必须同时检查 B [ j − 1 ] ≤ A [ i ] B[j−1] \leq A[i] B[j1]A[i] 以及 A [ i − 1 ] ≤ B [ j ] A[i−1] \leq B[j] A[i1]B[j] 是否成立。
但是如果 A [ i − 1 ] , B [ j − 1 ] , A [ i ] , B [ j ] A[i−1],B[j−1],A[i],B[j] A[i1],B[j1],A[i],B[j] 中部分不存在,那么我们只需要检查这两个条件中的一个(或不需要检查)。
举个例子,如果 i = 0 i=0 i=0,那么 A [ i − 1 ] A[i−1] A[i1] 不存在,我们就不需要检查 A [ i − 1 ] ≤ B [ j ] A[i−1] \leq B[j] A[i1]B[j] 是否成立。
所以,我们需要做的是:

[ 0 , m ] [0,m] [0m] 中搜索并找到目标对象 i i i,以使:
( j = 0 j=0 j=0 or i = m i = m i=m or B [ j − 1 ] ≤ A [ i ] B[j−1] \leq A[i] B[j1]A[i])
或是 ( i = 0 i=0 i=0 or j = n j = n j=n or A [ i − 1 ] ≤ B [ j ] A[i−1] \leq B[j] A[i1]B[j]), 其中 j = m + n + 1 2 − i j = \frac{m + n + 1}{2} - i j=2m+n+1i

在循环搜索中,我们只会遇到三种情况:

1.( j = 0 j=0 j=0 or i = m i = m i=m or B [ j − 1 ] ≤ A [ i ] B[j−1] \leq A[i] B[j1]A[i]) 或是 ( i = 0 i=0 i=0 or j = n j = n j=n or A [ i − 1 ] ≤ B [ j ] A[i−1] \leq B[j] A[i1]B[j]),这意味着 i i i 是完美的,我们可以停止搜索。
2. j > 0 j>0 j>0 and i < m i<m i<m and B [ j − 1 ] > A [ i ] B[j−1]>A[i] B[j1]>A[i] 这意味着 i i i 太小,我们必须增大它。
3. i > 0 i>0 i>0 and j < n j<n j<n and A [ i − 1 ] > B [ j ] A[i−1]>B[j] A[i1]>B[j] 这意味着 i i i 太大,我们必须减小它。

感谢 @Quentin.chen 指出: i < m    ⟹    j > 0 i < m \implies j > 0 i<mj>0 以及 i > 0    ⟹    j < n i > 0 \implies j < n i>0j<n 始终成立,这是因为:

m ≤ n , i < m    ⟹    j = m + n + 1 2 − i > m + n + 1 2 − m ≥ 2 m + 1 2 − m ≥ 0 m \leq n, i<m \implies j=\frac{m+n+1}{2}-i>\frac{m+n+1}{2}-m\geq\frac{2m+1}{2}-m\geq0 mn,i<mj=2m+n+1i>2m+n+1m22m+1m0
m ≤ n , i > 0    ⟹    j = m + n + 1 2 − i < m + n + 1 2 ≤ 2 n + 1 2 ≤ n m \leq n, i>0 \implies j=\frac{m+n+1}{2}-i<\frac{m+n+1}{2}\leq\frac{2n+1}{2}\leq n mn,i>0j=2m+n+1i<2m+n+122n+1n

所以,在情况 2 和 3中,我们不需要检查 j > 0 j>0 j>0 或是 j < n j<n j<n 是否成立。

def median(A, B):
    m, n = len(A), len(B)
    if m > n:
        A, B, m, n = B, A, n, m
    if n == 0:
        raise ValueError

    imin, imax, half_len = 0, m, (m + n + 1) / 2
    while imin <= imax:
        i = (imin + imax) / 2
        j = half_len - i
        if i < m and B[j-1] > A[i]:
            # i is too small, must increase it
            imin = i + 1
        elif i > 0 and A[i-1] > B[j]:
            # i is too big, must decrease it
            imax = i - 1
        else:
            # i is perfect

            if i == 0: max_of_left = B[j-1]
            elif j == 0: max_of_left = A[i-1]
            else: max_of_left = max(A[i-1], B[j-1])

            if (m + n) % 2 == 1:
                return max_of_left

            if i == m: min_of_right = B[j]
            elif j == n: min_of_right = A[i]
            else: min_of_right = min(A[i], B[j])

            return (max_of_left + min_of_right) / 2.0

作者:LeetCode
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/solution/xun-zhao-liang-ge-you-xu-shu-zu-de-zhong-wei-shu-b/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

复杂度分析

  • 时间复杂度: O ( l o g ( m i n ( m , n ) ) ) O(log(min(m,n))) O(log(min(m,n)))
    首先,查找的区间是 [ 0 , m ] [0,m] [0,m]
    而该区间的长度在每次循环之后都会减少为原来的一半。
    所以,我们只需要执行 l o g ( m ) log(m) log(m) 次循环。由于我们在每次循环中进行常量次数的操作,所以时间复杂度为 O ( l o g ( m ) ) O(log(m)) O(log(m))
    由于 m ≤ n m \leq n mn,所以时间复杂度是 O ( log ⁡ ( min ( m , n ) ) ) O\big(\log\big(\text{min}(m,n)\big)\big) O(log(min(m,n)))
  • 空间复杂度: O ( 1 ) O(1) O(1),
    我们只需要恒定的内存来存储 9 9 9 个局部变量, 所以空间复杂度为 O ( 1 ) O(1) O(1)

作者:LeetCode
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/solution/xun-zhao-liang-ge-you-xu-shu-zu-de-zhong-wei-shu-b/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值