【python进阶教程】深入理解python装饰器,装饰器使用案例提高运算效率(计算重复计算子问题的问题)

本文通过两个案例深入讲解如何利用Python装饰器解决重复计算问题,提高代码效率。首先介绍了普通实现的斐波那契数列及其缓存改写,然后讨论了计算走楼梯所有方式的优化方法。通过装饰器`@cache_num`,实现了动态存储已计算结果,避免了重复计算,有效提升了计算速度。
摘要由CSDN通过智能技术生成

【python进阶教程】深入理解python装饰器,装饰器使用案例提高运算效率(计算重复计算子问题的问题)

重复计算子问题的问题

案例一斐波那契数列

  • 普通实现
def fib(n):
    if n <= 1:
        return 1
    return fib(n - 1) + fib(n - 2)

使用缓存改写

def fibcache(n, cache=None):
    if cache is None:
        cache = {}
    if n in cache:
        return cache[n]
    if n <= 1:
        return 1
    cache[n] = fibcache(n - 1, cache) + fibcache(n - 2, cache)
    return cache[n]

问题:

案例二 一共有十个台阶的楼梯, 从下往上走,一次只能迈1-3个台阶,并且不能后退,走完这个楼梯共所有的楼梯共有多少中走法

def cache_num(func):
    cache = {}
    def wrap(*args):
        if args not in cache:
            cache[args] = func(*args)
        return cache[args]  # 如果没有的话就会被添加
    return wrap

@cache_num
def climb2(n, steps):
    count = 0
    if n == 0:
        count = 1
    elif n > 0:
        for step in steps:
            count += climb2(n - step, steps)
    return count

装饰器的使用方式二

@cache_num
def fib(n):
    if n <= 1:
        return 1
    return fib(n - 1) + fib(n - 2)

print(fib(30))

装饰器的使用方式一

fibn = cache_num(fib)
print(fibn(50))
print(climb2(10, (1, 2, 3)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不走小道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值