Kruskal-Wallis(详细)和卡方检验的介绍

1. Kruskal-Wallis介绍

Kruskal-Wallis也称为H 检验,是一种非参数检验,不需要知道原始数据的分布和总体参数。 KW检验是一种秩和检验,根据所有数据从小到大排序,算出每个数据的秩。其中Ri为每组的秩和,ni为每组的样本个数。当每组样本中的观察数目有 5 个或 5 个以 上,则样本统计量 KWC 的分布与自由度为 k-1 的 卡方分布非常接近。因此,KW 统计量可利用卡 方分布进行检验。
在这里插入图片描述
如果样本中存在结值(数据相同秩值的个数),则校正系数C为:
在这里插入图片描述
参考资料:
蒲 虎.Kruskal-Wallis 检验原理介绍及其应用[J].兴义民族师范学院学报.
python实现

from scipy import stats
A=[1,3,6,9,0]
B=[3,5,1,4,11,34]
C=[1,9,5,3,0,2,4,5,7,12]
kw=stats.kruskal(A,B,C).pvalue
print(kw)

stats.kruskal 官方详细介绍:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html
在这里插入图片描述

在小样本的情况下:k=3,ni<=5时,KW统计量可通过表查询得到
在大样本情况下:ni>5时,N越大,kw在零假设下近似服从自由度为(k-1)的卡方分布,因此KW 统计量可利用卡 方分布进行检验。

Kruskal-Wallis方法举例:
有三个工厂生产一种零件,各工厂生产零件的重量(g)如下:
H0: 三个工厂生产的零件重量无显著差异
H1: 三个工厂生产的零件重量有显著差异
在这里插入图片描述
在这里插入图片描述
通过查卡方检验表可知,自由度为k-1=2,显著性水平为0.05的时候,卡方值为5.9915。KWC>5.9915。所以拒绝原假设,认为三组数据是有显著差异的。秩和最低的C组和秩和最低的B组是有差异的。

2.卡方检验的介绍

卡方检验是非参数检验的一种,主要比较两个或两个以上的变量之间是否有关联性。也就是在一定显著水平下比较实际次数与理论(期望)次数的差异。卡方值越大代表差异越大,卡方值为0代表实际值完全符合理论值。
H0:实际值与理论值没有显著差异。
卡方检验一般是对于无序分类变量在两组或多组之间的分布是否一致,除此之外,还有其他应用:
1.检验某种连续变量的分布是否与理论分布一致
2.检验某个分类变量的概率是否等于某个指定概率
3.检验某两个分类变量是否独立
4.检验某两种方法的结果是否一致

参考:
晋丹星.卡方检验在大学生英语期末成绩与学习方式分析中的应用[J].海外英语.
卡方检验统计量为:
在这里插入图片描述
其中Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。i水平的期望频数Ei = n * pi,k为单元格数。当n比较大时,卡方统计量近似服从k-1自由度的卡方分布。

python实现

from scipy import stats
A=[1,3,6,9,0]
B=[3,5,12,54,11]
chi=stats.chisquare(A,B).pvalue
print(chi)

stats.chisquare 官方详细介绍:
http://pageperso.lif.univ-mrs.fr/~francois.denis/IAAM1/scipy-html-1.0.0/generated/scipy.stats.chisquare.html

在这里插入图片描述

Kruskal-Wallis H检验是一种用于比较三个或更多组之间差异的非参数统计检验方法。假设我们对不同品牌汽车的燃油效率进行了调查,并将数据分成了三个组:品牌A、品牌B品牌C。我们想要知道这三个品牌汽车的燃油效率是否存在显著的差异。 首先,我们将收集到的数据按照品牌分成三组,并对每组的燃油效率进行排名。然后,我们使用Kruskal-Wallis H检验来比较这三组数据的中位数是否有显著差异。在进行检验前,需要对数据进行正态性检验方差齐性检验。如果数据不满足正态性方差齐性的要求,可以使用Kruskal-Wallis H检验来代替方差分析。 Kruskal-Wallis H检验的零假设是三组数据的中位数没有显著差异,备择假设是三组数据的中位数存在显著差异。通过计算得出的H统计量与临界值比较,如果H统计量大于临界值,则拒绝零假设,说明三组数据的中位数存在显著差异。 通过Kruskal-Wallis H检验,我们可以得出结论:在显著水平α=0.05下,品牌A、品牌B品牌C的燃油效率存在显著差异/不存在显著差异。这样的分析结果可以为消费者选择汽车提供参考,也可以为汽车制造商改进产品提供指导。Kr使用Kruskal-Wallis H检验能够帮助我们做出合理的决策判断。uskal-Wallis H检验是一个非常有用的统计工具,可以在不满足方差齐性正态性的条件下对多组数据进行比较,为研究实践提供了很大的便利。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值