Image and Video Processing课程学习(一)图像压缩

最近在学习图像处理,课程是杜克大学的Image and Video Processing: From Mars to Hollywood with a Stop at the Hospita,原课程带中文字幕来自Coursera,此外B站有英文字幕的版本(看的话直接在两个网站搜名字就好了)。

本文仅仅是自己对所学内容的梳理,如果想学习请务必观看原视频,看不懂的话可以再来贴下讨论
第一章没什么内容,所以我从图像压缩开始~

这一部分主要讲了JPEG图像的压缩规则,整个过程分为取样、DCT、量化、编码4个部分,原视频是从后往前讲的。
在这里插入图片描述

编码

编码规则较简单,霍夫曼编码,整个过程就是先算出所有值的比重(下图一),给比重的值编码的位数小,接着按照比重分布往下排编码位数(下图二)。这样就比给所有的像素都赋予一样位数的编码要节省很大空间。在这里插入图片描述在这里插入图片描述

量化

量化和重分类规则较像,说白了就是划分很区间,把相应区间像素值用该区间表示,比如0~9用0表示,10—19用1表示此类。区间分的越大,量化结果就越小。此外,JPEG采用的均匀区间。

DCT(离散余弦变换)

啥时图像压缩,图像压缩说白了就是用少量的要素用表示一张图像,比如每8*8部分的像素可以用一个值(系数)替代?没错,这就是我们想要的图像压缩,怎么替代呢?教授提出了KLT变换,我们熟知的主成分分析就是KLT变换的一个特例。但是我们用主成分分析的都知道,做主成分分析(PCA)要用原图像来求第一主成分啊,我们难道要拿到原图像再去算么?麻烦!于是教授又提出了离散余弦变化。
说实话,我之前是没有信号处理这方面基础知识的,于是花点时间恶补了一下傅里叶变换。我建议大家如果不熟悉的也可以去补一下(知乎有科普,B站有公式推导),再进行后面的学习。而我们要做的类似于二维傅里叶变换(大致原理参见下图一,就是用有限的排布去尽量贴合原图像)。那么为什么不傅里叶变换反而又要用离散余弦变换呢?教授又给出了原因(下图二):离散余弦变化和傅里叶不同的是前者是取后者的一个子集,也就是把余弦那部分信号拿出来了,在周期变化是呈现偶函数的特征,即对称。对称有个好处,看起来是连续的,适合图像的特性,毕竟图像一般只有存在边界的时候像素差别才会很大。
在这里插入图片描述
在这里插入图片描述

取样

又回到熟知的88取样环节了哦,为什么是88呢,首先先测试取像块是不是越大越好。
下图从左到右分别为原图,22,44,88,都是按照不同块级进行离散余弦变换并取25%的系数显示。看结果,嗯,取样块是越大越好,但是,那我们为什么不采用1616或更大呢?
在这里插入图片描述
教授给了两个原因:
1.计算机处理小块图像会更快
2. 当块太大时,块里内容关联性会降低(马尔科夫链),于是离散余弦变换效果会下降。

无损压缩

无损压缩,流程见下图二。大致原理就是设计一个预测器,能根据像素周围像素值预测该像素值,再计算误差,之后不保存该像素值而是保存误差。这样子需要保存的数据量会大大降低(见下图二)。此外,视频的无损压缩思想也很相似,和用周边像素相似,视频某一帧的像素用其他帧像素来预测,只储存误差。
在这里插入图片描述
在这里插入图片描述

游程编码

这个就非常简单了,在此不表

Hardcover: 280 pages Publisher: Chapman and Hall/CRC; Har/Cdr edition (March 22, 2011) Language: English ISBN-10: 1439829357 ISBN-13: 978-1439829356 As more images and videos are becoming available in compressed formats, researchers have begun designing algorithms for different image operations directly in their domains of representation, leading to faster computation and lower buffer requirements. Image and Video Processing in the Compressed Domain presents the fundamentals, properties, and applications of a variety of image transforms used in image and video compression. It illustrates the development of algorithms for processing images and videos in the compressed domain. Developing concepts from first principles, the book introduces popular image and video compression algorithms, in particular JPEG, JPEG2000, MPEG-2, MPEG-4, and H.264 standards. It also explores compressed domain analysis and performance metrics for comparing algorithms. The author then elucidates the definitions and properties of the discrete Fourier transform (DFT), discrete cosine transform (DCT), integer cosine transform (ICT), and discrete wavelet transform (DWT). In the subsequent chapters, the author discusses core operations, such as image filtering, color enhancement, image resizing, and transcoding of images and videos, that are used in various image and video analysis approaches. He also focuses on other facets of compressed domain analysis, including video editing operations, video indexing, and image and video steganography and watermarking. With MATLAB® codes on an accompanying CD-ROM, this book takes you through the steps involved in processing and analyzing compressed videos and images. It covers the algorithms, standards, and techniques used for coding images and videos in compressed formats.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值