poj题目链接:
http://poj.org/problem?id=1328
分析:
大致题意:将一条海岸线看成X轴,X轴上面是大海,海上有若干岛屿,给出雷达的覆盖半径和岛屿的位置,要求在海岸线上建雷达,在雷达能够覆盖全部岛屿情况下,求雷达的最少使用量。
本题一看就用贪心做,怎么贪呢?先研究一下每个岛屿,设岛屿到海岸线的垂直距离为d,雷达的覆盖半径为k,若d>k,直接输出-1,若d<=k,则雷达的建造有一个活动区间[x1,x2](用平面几何可以求得出来)。因此,在可以覆盖的情况下每个岛屿都有一个相应的活动区间。该问题也就转变成了最少区间选择问题即:
在n个区间中选择一个区间集合,集合中的各个区间都不相交,集合中元素的个数就是答案了。
代码:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
struct node{
double x;
double y;
}pp[1010];
int cmp(const void *a,const void *b)
{
return (*(node *)a).x>(*(node *)b).x?1:-1;
}
int main()
{
int m,n,t,cnt=0;
double dis,s;
bool flag;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0)
break;
flag=false;
if(m<=0)
flag=true;
for(int i=0;i<n;i++)
{
scanf("%lf%d",&s,&t);
if(abs(t)<=m)
{
dis=sqrt(double(m*m-t*t));
pp[i].x=s-dis;
pp[i].y=s+dis;
}
else flag=true;
}
if(flag)
{
printf("Case %d: -1\n",++cnt);
continue;
}
qsort(pp,n,sizeof(pp[0]),cmp);
s=pp[0].y;
int cout=1;
for(int i=1;i<n;i++)
{
if(pp[i].x>s)
{
cout++;
s=pp[i].y;
}
else
{
if(pp[i].y<s)
s=pp[i].y;
}
}
printf("Case %d: %d\n",++cnt,cout);
}
//system("pause");
return 0;
}