OpenCV视觉处理核心课程

OpenCV视觉处理核心课程

观看链接:https://www.bilibili.com/video/av29500928?from=search&seid=4700863932001463989

 

第一讲 工欲善其事必先利其器——图像处理基础

Open Libraries/projects:

OpenCV:http://opencv.org/

HALCON:http://www.halcon.com/

 

下载——三个链接:

1)http://opencv.org/   (最新发布)

2)https://sourceforge.net/projects/opencvlibrary/  (File文件夹下)

3)https://github.com/opencv

 

两个开源项目:

1)Open BR:http://openbiometrics.org/

2)EasyBR:https://gitee.com/easypr/EasyPR

 

第二讲  初探计算机视觉

Image Watch:

1、Image Watch 的下载链接:https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch

2、OpenCV关于Image Watch的介绍页面 链接:https://opencv.org/image-debugger-plug-in-for-visual-studio/

3、OpenCV2.4 在线文档关于Image Watch 的介绍文档:https://docs.opencv.org/2.4/doc/tutorials/introduction/windows_visual_studio_image_watch/windows_visual_studio_image_watch.html#windows-visual-studio-image-watch

4、更详细的信息参见Image Watch的官方 网站:https://www.microsoft.com/en-us/research/group/interactive-visual-media/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fredmond%2Fgroups%2Fivm%2Fimagewatchhelp%2Fimagewatchhelp.htm

view ——>other windows ——> Image watch

 

OpenCV推荐资料:
手册:http://docs.opencv.org/
教程: http://docs.opencv.org/doc/tutorials/tutorials.html
进阶:https://github.com/opencv/opencv/wiki

 

项目:

手写字符识别 MNIST database of handwritten digits :http://yann.lecun.com/exdb/mnist/

 

Python基础教程https://www.runoob.com/python/python-tutorial.html

 

第三讲 空域图像处理的洪荒之力

Template matching (eg. DIC/DSCM)http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html

 

第四讲:机器视觉中的特征提取与描述

KAZE链接OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

 

第五讲:坐标变换与视觉测量

Calibration in OpenCV推荐:1)https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html

2)《Learning OpenCV》

相机Matlab标定工具箱(理论与原理)问题:http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

下载cmakehttp://www.cmake.org/download/

 

第六讲:深度学习在图像识别中的应用

 

第七讲:图像检索

1)图像特征GIST:MATLAB实现参见:http://people.csail.mit.edu/torralba/code/spatialenvelope/LMgist.m

C版本实现参见:http://lear.inrialpes.fr/src/lear_gist-1.2.tgz

 2)深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统a——https://blog.csdn.net/han_xiaoyang/article/details/50856583

项目地址:https://github.com/HanXiaoyang/image_retrieval

3)用VisualSearchSearver和CIFAR-10构建一个简易图像检索系统

(1)https://github.com/AKSHAYUBHAT/VisualSearchServer

(2)http://www.cs.toronto.edu/~kriz/cifar.html  ——适合自己的小型电脑

参考任何一个电商图像搜索方法

比如:https://github.com/bobbens/cvpr2016_stylenet

利用以下数据集构建图像检索系统

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html

 

第八讲:图像标注与问答

Google Research Blog:PAMI paper: https://arxiv.org/pdf/1609.06647v1.pdf

数据库和比赛1)COCO Captioning Challenge:https://competitions.codalab.org/competitions/3221

2)Evaluation metric:http://mscoco.org/dataset/#download

3)Visual Genome:https://visualgenome.org/

 Recurrent Neural Networks (RNN)
http://www.wildml.com/2015/09/recurrent-neural-networkstutorial-part-1-introduction-to-rnns/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
(highly recommended)
http://deeplearning.net/tutorial/lstm.html

 

LSTM推荐http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(译)理解 LSTM 网络 (Understanding LSTM Networks by colah)——https://www.cnblogs.com/mfryf/p/7904017.html

 

几个最新方法

案例1neuraltalk2:https://github.com/karpathy/neuraltalk2

此代码入门:http://tylerneylon.com/a/learn-lua/

  Lua 15 分钟快速入门(Learn Lua in 15 Minutes)——https://blog.csdn.net/sdfsdr/article/details/51258680
学习Torchhttps://github.com/torch/torch7/wiki/Cheatsheet

2. denseCaphttps://github.com/jcjohnson/densecap

值得思考的问题

【人体姿态】Stacked Hourglass算法详解https://blog.csdn.net/shenxiaolu1984/article/details/51428392

 

第九讲:3D计算机视觉

Photos from tourists (photo tourism):http://phototour.cs.washington.edu/

全景拼接http://hli2020.github.io/2016/02/20/pano/

Three-image 2D-to-3D reconstruction method:http://www.cs.unc.edu/~marc/tutorial/node45.html

资源和参考文献http://web.stanford.edu/class/cs231a/

 

第十讲:机器视觉项目实战

NLP之——Word2Vec详解:https://www.cnblogs.com/guoyaohua/p/9240336.html

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值