干货案例|Pandas数据可视化怎么做?

数据可视化可以让我们很直观的发现数据中隐藏的规律,察觉到变量之间的互动关系,可以帮助我们更好的给他人解释现象,做到一图胜千文的说明效果。

常见的数据可视化库有:

  • matplotlib 是最常见的2维库,可以算作可视化的必备技能库,由于matplotlib是比较底层的库,api很多,代码学起来不太容易。

  • seaborn 是建构于matplotlib基础上,能满足绝大多数可视化需求。更特殊的需求还是需要学习matplotlib。

  • pyecharts 上面的两个库都是静态的可视化库,而pyecharts有很好的web兼容性,可以做到可视化的动态效果。

但是在数据科学中,几乎都离不开pandas数据分析库,而pandas可以做:

  • 数据采集:如何批量采集网页表格数据?

  • 数据读取:pd.read_csv/pd.read_excel

  • 数据清洗(预处理):理解pandas中的apply和map的作用和异同

  • 可视化兼容matplotlib语法(今天重点)

准备工作

如果你之前没有学过pandas和matpltolib,我们先安装好这几个库

1!pip3 install numpy
2!pip3 install pandas
3!pip3 install matplotlib

已经安装好,现在我们导入这几个要用到的库。使用的是伦敦天气数据,一开始我们只有12个月的小数据作为例子

1#jupyter notebook中需要加这行代码
2%matplotlib inline
3import matplotlib.pyplot as plt
4import numpy as np
5import pandas as pd
6#读取天气数据
7df = pd.read_csv('data/london2018.csv')
8df

plot最简单的图

选择Month作为横坐标,Tmax作为纵坐标,绘图。

1df.plot(x='Month', y='Tmax')
2   plt.show()

  • 横坐标轴参数x传入的是df中的列名Month

  • 纵坐标轴参数y传入的是df中的列名Tmax

折线图

上面的图就是折线图,折线图语法有三种

  • df.plot(x='Month', y='Tmax')

  • df.plot(x='Month', y='Tmax', kind='line')

  • df.plot.line(x='Month', y='Tmax')

1df.plot.line(x='Month', y='Tmax')
2plt.show()

1#grid绘制格线
2df.plot(x='Month', y='Tmax', kind='line', grid=True)
3plt.show()

多个y值

上面的折线图中只有一条线, 如何将多个y绘制到一个图中,比如Tmax, Tmin。

1df.plot(x='Month', y=['Tmax', 'Tmin'])
2plt.show()

条形图

1df.plot(x='Month',
2        y='Rain',
3        kind='bar')
4#同样还可以这样画
5#df.plot.bar(x='Month', y='Rain')
6plt.show()

水平条形图

bar换成barh,就可以将条形图变为水平条形图

1df.plot(x='Month',
2        y='Rain',
3        kind='barh')
4#同样还可以这样画
5#df.plot.barh(x='Month', y='Rain')
6plt.show()

多个变量的条形图

1df.plot(kind='bar',
2        x = 'Month',
3       y=['Tmax', 'Tmin'])
4plt.show()

散点图

1df.plot(kind='scatter',
2        x = 'Month',
3        y = 'Sun')
4plt.show()

饼形图

1df.plot(kind='pie', y='Sun')
2plt.show()

上图绘制有两个小问题:

  • legend图例不应该显示

  • 月份的显示用数字不太正规

1df.index = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
2df.plot(kind='pie', y = 'Sun', legend=False)
3plt.show()

更多数据

一开头的数据只有12条记录(12个月)的数据,现在我们用更大的伦敦天气数据

1import pandas as pd
2df2 = pd.read_csv('data/londonweather.csv')
3df2.head()

 1df2.Rain.describe()
 2count    748.000000
 3mean      50.408957
 4std       29.721493
 5min        0.300000
 625%       27.800000
 750%       46.100000
 875%       68.800000
 9max      174.800000
10Name: Rain, dtype: float64

上面一共有748条记录, 即62年的记录。

箱型图

1df2.plot.box(y='Rain')
2#df2.plot(y='Rain', kind='box')
3plt.show()

直方图

1df2.plot(y='Rain', kind='hist')
2#df2.plot.hist(y='Rain')
3plt.show()

纵坐标的刻度可以通过bins设置

1df2.plot(y='Rain', kind='hist', bins=[0,25,50,75,100,125,150,175, 200])
2#df2.plot.hist(y='Rain')
3plt.show()

多图并存

1df.plot(kind='line',
2         y=['Tmax', 'Tmin', 'Rain', 'Sun'], #4个变量可视化
3         subplots=True,   #多子图并存
4         layout=(2, 2),   #子图排列2行2列
5         figsize=(20, 10)) #图布的尺寸
6plt.show()

1df.plot(kind='bar',
2         y=['Tmax', 'Tmin', 'Rain', 'Sun'], #4个变量可视化
3         subplots=True,   #多子图并存
4         layout=(2, 2),   #子图排列2行2列
5         figsize=(20, 10)) #图布的尺寸
6plt.show()

加标题

给可视化起个标题

1df.plot(kind='bar',
2         y=['Tmax', 'Tmin'], #2个变量可视化
3         subplots=True,   #多子图并存
4         layout=(1, 2),   #子图排列1行2列
5         figsize=(20, 5),#图布的尺寸
6         title='The Weather of London')  #标题
7plt.show()

保存结果

可视化的结果可以存储为图片文件

1df.plot(kind='pie', y='Rain', legend=False, figsize=(10, 5), title='Pie of Weather in London')
2plt.savefig('img/pie.png')
3plt.show()

df.plot更多参数

df.plot(x, y, kind, figsize, title, grid, legend, style)

  • x 只有dataframe对象时,x可用。横坐标

  • y 同上,纵坐标变量

  • kind 可视化图的种类,如line,hist, bar, barh, pie, kde, scatter

  • figsize 画布尺寸

  • title 标题

  • grid 是否显示格子线条

  • legend 是否显示图例

  • style 图的风格

查看plot参数可以使用help

1import pandas as pd
2help(pd.DataFrame.plot)

End.

来源:大邓和他的Python

扫码关注我们

我就知道你“在看”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值