Sift尺度不变特征变换匹配算法
Scale Invariant Feature Transform
主要的思路就是使用高斯金字塔和高斯核滤波查分来提取局部特征。在尺度空间当中寻找极值点,提取位置、尺度和旋转不变量。
Sigema代表高斯分布的方差,尺度空间可以定义为原始图像I(x,y)与一个可变吃段高斯函数G(x,y,sigema), 。
Sigema,sigema是高斯金字塔的尺度参数,sigema越小,图像被平滑越小,相应的尺度就越小。当sigema连续变化,G(x,y,z)就生成了图像的尺度空间。
先介绍一下尺度空间理论:
用来模拟图像数据的多尺度特征,高斯卷积核是实现初读变化的唯一线性核:
高斯金字塔就是为了得到不同空间下的稳定关键点,将图像和不同的尺度因子的高斯核进行卷积操作,
假设有o组,每一个组都有s层,通过一定的知识,可以的得到,组内尺度和组件尺度归结为:
第一步
将原图分离模糊成告诉金字塔模型,实际上就是使用高斯模糊将特征提取出来,
模板大小为m*n的模板元素(x,y),对整个图像进行滑移,在滑移之前,要注意边界的影响。
Sigema取值的不同,会导致不同的边缘处理效果。
使用不同的系数k的sigema,会生成一系列高斯特征:
如上图所示,想生成一阶的图,同一阶的图的sigema相同,但是k不同,然后使用个点取样的方法,生成第二阶的图形,继续使用不同倍数的sigema来对图形进行遍历,得到第二届高斯图。
为了有效的在尺度空间当中检测到关