python中装饰器的理解

#此处log()函数就是一个装饰器即decorater
def log(func):#首先定义了一个log函数,接受函数作为它的参数
    def wrapper(*args, **kw):#*args,**kw表示函数wrapper接受任意类型的参数
        print('call %s():' % func.__name__)#func.__name__表示函数func的__name__属性
        return func(*args, **kw)#*args,**kw表示函数func接受任意类型的参数
    return wrapper
@log#此处相当于执行now = log(now)下面的语句效果和这个一样
def now():
    print('2015-3-25')
#now = log(now)
now()
####执行过程说明####
'''将now函数作为log函数的参数传入,执行print语句之后,wrapper函数返回的是now函数
  (可以接受任意类型的参数,所以空参数也可以),而now函数执行的是其print语句,而log函数返回的又是wrapper函数,
   这样就完成了整个执行过程。****整个执行过程是先执行log函数,而log函数返回的是wrapper函数,再执行wrapper函数****'''
#再来看三层嵌套的装饰器
'''def log(text):
    def decorator(func):
        def wrapper(*args, **kw):
            print('%s %s():' % (text, func.__name__))
            return func(*args, **kw)
        return wrapper
    return decorator
@log('execute')#此处相当于执行 now = log('execute')(now)
def now():
print('2015-2-25')'''
print(now.__name__)#此处now的_name_属性已经有now变成了wrapper
'''因为返回的那个wrapper()函数名字就是'wrapper',
   所以,需要把原始函数的__name__等属性复制到wrapper()函数中,
   否则,有些依赖函数签名的代码执行就会出错。'''
#下面是完整的装饰器写法:
'''import functools


def log(func):
    @functools.wraps(func)#不需要编写wrapper.__name__ = func.__name__这样的代码,Python内置的functools.wraps就是干这个事的
    def wrapper(*args, **kw):
        print('call %s():' % func.__name__)
        return func(*args, **kw)
    return wrapper 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值