题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)
解题思路
法1:双层遍历 + 特殊情况讨论。
法2:对于一个数组中的一个数x,若是x的左边的数加起来非负,那么加上x能使得值变大,这样我们认为x之前的数的和对整体和是有贡献的。如果前几项加起来是负数,则认为有害于总和。 我们用cur记录当前值, 用max记录最大值,如果cur<0,则舍弃之前的数,让cur等于当前的数字,否则,cur = cur+当前的数字。若cur和大于max更新max。
参考代码
法1 (时间复杂度O(n2)):
public class Solution {
public static int FindGreatestSumOfSubArray(int[] array) {
if(array.length == 0){
return 0;
}
int maxNum = Integer.MIN_VALUE;
int curNum = 0;
//先讨论子数组>=2 的情况
for(int i = 0; i<array.length; i++){
curNum = array[i];
for (int j = i+1; j<array.length; j++){
curNum += array[j];
if(maxNum<curNum){
maxNum = curNum;
}
}
}
//对于子数组只有一个值的情况
for (int i : array) {
if(maxNum<i){
maxNum = i;
}
}
return maxNum;
}
public static void main(String[] args) {
int [] input = {-2,-8,-1,-5,-9};
System.out.println(Solution.FindGreatestSumOfSubArray(input));
}
}
法2(时间复杂度O(n)):
//优化
public class Solution {
public static int FindGreatestSumOfSubArray(int[] array) {
if(array.length == 0)
return 0;
int cur = array[0], max = array[0];
for(int i=1; i<array.length; i++){
cur = cur > 0 ? cur + array[i] : array[i];
if(max < cur)
max = cur;
}
return max;
}
public static void main(String[] args) {
int [] input = {-2,-8,-1,-5,-9};
System.out.println(Solution.FindGreatestSumOfSubArray(input));
}
}