[剑指offer] 连续子数组的最大和

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)

解题思路

法1:双层遍历 + 特殊情况讨论。
法2:对于一个数组中的一个数x,若是x的左边的数加起来非负,那么加上x能使得值变大,这样我们认为x之前的数的和对整体和是有贡献的。如果前几项加起来是负数,则认为有害于总和。 我们用cur记录当前值, 用max记录最大值,如果cur<0,则舍弃之前的数,让cur等于当前的数字,否则,cur = cur+当前的数字。若cur和大于max更新max。

参考代码

法1 (时间复杂度O(n2)):

public class Solution {
    public static int FindGreatestSumOfSubArray(int[] array) {

        if(array.length == 0){
            return 0;
        }
        int maxNum = Integer.MIN_VALUE;
        int curNum = 0;
        //先讨论子数组>=2 的情况
        for(int i = 0; i<array.length; i++){
            curNum = array[i];
            for (int j = i+1; j<array.length; j++){
                curNum += array[j];
                if(maxNum<curNum){
                    maxNum = curNum;
                }
            }
        }
        //对于子数组只有一个值的情况
        for (int i : array) {
            if(maxNum<i){
                maxNum = i;
            }
        }
        return maxNum;
    }

    public static void main(String[] args) {
        int [] input = {-2,-8,-1,-5,-9};
        System.out.println(Solution.FindGreatestSumOfSubArray(input));
    }
}

法2(时间复杂度O(n)):

//优化
public class Solution {
    public static int FindGreatestSumOfSubArray(int[] array) {

        if(array.length == 0)
            return 0;
        int cur = array[0], max = array[0];
        for(int i=1; i<array.length; i++){
            cur = cur > 0 ? cur + array[i] : array[i];
            if(max < cur)
                max = cur;
        }
        return max;
    }

    public static void main(String[] args) {
        int [] input = {-2,-8,-1,-5,-9};
        System.out.println(Solution.FindGreatestSumOfSubArray(input));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值