每日一道算法题(626,买卖股票的最佳时机 III(动态规划解决))

动态规划的另一种解法
动态规划相关的题怎么解,主要看状态的定义。上面我们定义的是二维数组,这里我们
还可以定义一个三维数组。
定义dp[i][ j][k]表示在第i天交易结束后,最多进行j次交易所获得的最大利润。注意这
里的k要么是0,要么是1。0表示手里没有股票,1表示手里有一支股票。
dp[i][ j][0]:表示第i天交易结束之后,最多进行j次交易,并且手里没有股票的最大利
润。
dp[i][ j][1]:表示第i天交易结束之后,最多进行j次交易,并且手里持有股票的最大利

那么在当天结束之后我们会有6种状态
1,没有进行过任何交易,利润永远为0

   

dp[i][0][0]=0

 2,卖出过一次股票(完成一次交易),但目前手上没有股票:可能是今天卖出,也可
能是之前卖的(注意:买一次卖一次才能算一次完整的交易)

dp[i][1][0]=max(dp[i-1][0][1]+prices[i],dp[i-1][1][0])

 3,卖出过两次股票(完成两次交易),但目前手上没有股票:也可能是今天卖的,也
可能是之前卖的。

 dp[i][2][0]=max(dp[i-1][1][1]+prices[i],dp[i-1][2][0])

4,没有卖出过任何股票,但目前手上持有股票:可能是今天持有的,也可能是之前持
有的

dp[i][0][1]=max(dp[i-1][0][0]-prices[i],dp[i-1][0][1])

5,卖出过一次股票(完成一次交易),但目前手上持有股票:可能是今天持有的,也
可能是之前持有的

dp[i][1][1]=max(dp[i-1][1][0]-prices[i],dp[i-1][1][1])

6,卖出过两次次股票(完成两次交易),但目前手上持有股票:由于最多交易2次,
这种情况是无效的

dp[i][2][1]:

有了上面的递推公式,我们再来看一下base case,第一天的时候我们要么买一支股
票,要么什么也不做,所以

dp[0][0][0] = 0;//第一天没进行任何买卖
dp[0][0][1] = -prices[0];//第一天买入一支股票
//第一天不可能有下面4种情况,所以是无效的
dp[0][1][0] = Integer.MIN_VALUE / 2;
dp[0][1][1] = Integer.MIN_VALUE / 2;
dp[0][2][0] = Integer.MIN_VALUE / 2;
dp[0][2][1] = Integer.MIN_VALUE / 2;

我们看下完整代码

public int maxProfit(int[] prices) {
int[][][] dp = new int[prices.length][3][2];
dp[0][0][0] = 0;//第一天没进行任何买卖
dp[0][0][1] = -prices[0];//第一天买入一支股票
//第一天不可能有下面4种情况,所以是无效的
dp[0][1][0] = Integer.MIN_VALUE / 2;
1 dp[i][0][1]=max(dp[i-1][0][0]-prices[i],dp[i-1][0][1])
1 dp[i][1][1]=max(dp[i-1][1][0]-prices[i],dp[i-1][1][1])
1 dp[i][2][1]:无效
1
2
3
4
5
6
7
dp[0][0][0] = 0;//第一天没进行任何买卖
dp[0][0][1] = -prices[0];//第一天买入一支股票
//第一天不可能有下面4种情况,所以是无效的
dp[0][1][0] = Integer.MIN_VALUE / 2;
dp[0][1][1] = Integer.MIN_VALUE / 2;
dp[0][2][0] = Integer.MIN_VALUE / 2;
dp[0][2][1] = Integer.MIN_VALUE / 2;
 dp[0][1][1] = Integer.MIN_VALUE / 2;
dp[0][2][0] = Integer.MIN_VALUE / 2;
dp[0][2][1] = Integer.MIN_VALUE / 2;
for (int i = 1; i < prices.length; i++) {
//递推公式
//dp[i][0][0] = 0; 这个可以省略
dp[i][1][0] = Math.max(dp[i - 1][0][1] + prices[i], dp[i - 1][1][0]);
dp[i][2][0] = Math.max(dp[i - 1][1][1] + prices[i], dp[i - 1][2][0]);
dp[i][0][1] = Math.max(dp[i - 1][0][0] - prices[i], dp[i - 1][0][1]);
dp[i][1][1] = Math.max(dp[i - 1][1][0] - prices[i], dp[i - 1][1][1]);
//dp[i][2][1]:无效
}
//要么没交易,要么交易一次,要么交易两次,取最大值即可
return Math.max(dp[prices.length - 1][0][0], Math.max(dp[prices.length - 1][1][0],
dp[prices.length - 1][2][0]));
}

上面的三维数组我们还可以使用4个变量来表示,下面有详细注释,具体可以看下

public int maxProfit(int[] prices) {
//类似于dp[i][0][1],第一次买
int buy1 = Integer.MIN_VALUE / 2;
//类似于dp[i][1][0],第一次卖
int sell1 = 0;
//类似于dp[i][1][1],第二次买
int buy2 = Integer.MIN_VALUE / 2;
//类似于dp[i][2][0],第二次卖
int sell2 = 0;
for (int i = 0; i < prices.length; i++) {
//递推公式
sell1 = Math.max(buy1 + prices[i], sell1);
sell2 = Math.max(buy2 + prices[i], sell2);
buy1 = Math.max(-prices[i], buy1);
buy2 = Math.max(sell1 - prices[i], buy2);
}
//要么没交易,要么交易一次,要么交易两次,取最大值即可
return Math.max(0, Math.max(sell1, sell2));
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值