目标检测算法汇总比较

作者:金天
链接:https://zhuanlan.zhihu.com/p/39579528
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

很难衡量一个检测算法的好坏,因为除了算法本身的思路之外,还有许多因素影响它的速度和精度,比如:

  • 特征提取网络(VGG, ResNet, Inception, MobileNet);
  • 输出的步长,越大分类数目越多,相应的速度也会受影响;
  • IOU的评判方式;
  • nms的阈值;
  • 难样本挖掘的比率(正样本和负样本的比率);
  • 生成的proposal的数目(不同的方法输出是不同的);
  • bbox的编码方式,是预测offset还是相对位置?
  • 数据预处理的数据增广方法;
  • 用哪个特征层来做检测;
  • 定位误差函数的实现方法;
  • 不同的框架;
  • 训练时候的不同设置参数,如batch_size, 输入图片大小,学习率,学习衰减率等因素;

为了对比不同的算法,可以不考虑上述的所有影响因素,直接对论文结果评测,应该能大体看出不同方法的速度差异。

 

上图是一个所有方法的预览。从图中可以看出RFCN的准确度是最高的。

 

上图可以看出,速度最快的还是yolo和SSD一体化的方法。

这是在ms-coo数据集上的测试效果,从效果可以看出,Retina-Net在mAP效果是最好的。其中Faster-RCNN改用Resnet作为特征抽取网络准确率有较大的提升。

最后是Google做的一个research,在TensorFlow上统一的实现了所有的检测算法,yolo没有包含在内。最终的测试结果可以表示为:

从上面可以大致的看出,Faster-RCNN的准确度更加精确,而RFCN和SSD更快。

上述只是一个预览,但是除了这些之外,我们还需要考虑一些更加细化的因素。

不同的特征抽取网络

特征抽取网络不通,最终的结果也不同。简单来说,一个更加复杂的特征抽取网络可以大大的提高Faster-RCNN和RFCN的精确度,但是对于SSD,更好的特征抽取网络对结果影响不大,所以你看SSD+MobileNet也不会太大的影响结果。从这个图可以看得很清楚:

目标物体的大小

对于大物体,SSD即使使用一个较弱的特征抽取器也可以获取较好的精确度。但在小物体上SSD的表现结果非常不好。

具体来看,SSD在一张图片里面就经常漏检测小物体,比如:

Proposal的数目

不同的Proposal数目会影响检测器的速度和精度。这个很重要,很多人想加速Faaster-RCNN但是不知道从何下手,显然这里是一个很好的切入点。 将Proposal的数目从300削减到50,速度可以提高3倍,但是精度仅仅降低4%,可以说非常值了。我们从这张图可以看得很清楚:

最终我们可以得到一个很科学的结果:

  1. 最高精度

使用Faster-RCNN毫无疑问,使用Inception ResNet作为特征抽取网络,但是速度是一张图片1s; 还有一种方法是一种叫做集成的动态选择模型的方法(这个你就不要追求速度了);

  1. 最快

SSD+MobileNet是速度最快的,但是小目标检测效果差;

  1. 平衡 如果既要保证精度又要保持速度,采用Faster-RCNN将proposla的数目减少到50,同时还能够达到RFCN和SSD的速度,但mAP更优。

 

<think>好的,我现在需要处理用户的问题,他想查找关于目标检测算法的总结图表,特别是综述图解或对比汇总图。首先,我要理解他的需求。目标检测计算机视觉中的一个重要领域,有很多算法,比如R-CNN系列、YOLO、SSD等,用户可能希望有一个结构化的图表来比较这些算法的优缺点、性能指标或者发展脉络。 接下来,我需要回忆系统内的引用内容。用户提供的引用中有提到车辆检测的论文[^1]、视觉SLAM的分类[^2]、双边滤波的OpenCV函数[^3]以及merge_derived函数的解释[^4]。这些引用中,引用[1]和引用[2]可能与目标检测相关,但具体是否有图表信息还不清楚。不过用户的问题是关于目标检测算法的总结图表,所以可能需要依赖更通用的知识。 然后,我要考虑如何回答用户的问题。用户可能无法直接访问某些论文或资源,所以需要提供一些建议,比如推荐经典综述论文、知名会议上的对比图表,或者开源项目中的资源。同时,根据系统级指令,需要生成相关问题。 接下来,我需要验证是否有相关引用中的内容可以直接使用。例如,引用[1]提到“车辆检测”的论文,可能里面包含算法比较,但不确定是否有图表。引用[2]讨论视觉SLAM的分类,可能不直接相关。因此,可能需要建议用户查阅其他资源,如CVPR、ICCV会议的论文,或者ArXiv上的综述。 另外,用户可能需要具体的图表资源,比如GitHub上的开源项目,或者像Papers With Code这样的网站,那里通常会有算法比较和性能指标。同时,可以提到一些经典的目标检测模型,如Faster R-CNN、YOLO系列、RetinaNet等,并建议用户查找这些模型的对比分析。 还要注意回答的结构,按照用户可见层的要求,结构清晰,分步骤解决问题。可能需要分点说明建议的方法,如查阅综述论文、访问学术平台、参考开源项目等,每个点给出具体的例子或链接(如果允许的话)。同时,生成的相关问题需要围绕目标检测的评估指标、最新进展、实际应用等。 最后,确保回答符合格式要求:使用中文,数学公式正确,引用标识自然添加。虽然用户的问题不涉及数学公式,但如果有性能指标(如mAP)可能需要用$格式,例如$mAP@0.5$。同时检查是否有需要添加引用标识的地方,比如引用提到的文献,但根据现有引用内容,可能需要在回答中引用[^1]和[^2],但需要确认相关性。 总结思考步骤:用户需要目标检测算法对比图表,建议查阅综述论文、学术平台和开源资源,生成相关问题如评估指标、最新算法比较、实际应用挑战。</think>根据您对目标检测算法总结图表的需求,建议通过以下途径获取结构化信息: 1. **经典综述论文图表** 最新目标检测算法综述通常会包含对比示意图,例如: - 《Deep Learning for Generic Object Detection: A Survey》中比较了Faster R-CNN/YOLO/SSD等算法检测流程 - 《Object Detection in 20 Years: A Survey》包含完整算法发展时间轴 - CVPR2023会议论文常附带算法对比表格,例如Transformer-based检测对比 2. **学术平台可视化资源** - Papers With Code网站的Object Detection页提供实时性能排行榜 - GitHub开源项目如[awesome-object-detection](https://github.com/amusi/awesome-object-detection)包含算法对比图 - ArXiv搜索"object detection survey diagram"可找到最新图解 $$ \text{mAP} = \frac{1}{n}\sum_{i=1}^{n} \int_{0}^{1} p_i(r) dr $$ (典型目标检测评估指标mAP计算公式) 3. **开源框架文档** - Detectron2文档中的模型Zoo包含$AP_{50}$/$AP_{75}$等指标对比 - MMDetection项目提供算法架构对比图,包含Anchor-based与Anchor-free方法可视化对比
评论 10
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值