目标检测方法效果小结

1.R-CNN:

使用selective search方法先产生region proposals,再使用浅层CNN网络进行特征提取,最后使用svm进行分类。这篇论文里提及的一个点,就是关于bbox的回归方法。由于使用selective search方法提取的每一个region都进行一次前向卷积操作,因此R-CNN方法非常耗时,不适于实际检测使用。

2.SPP-Net:

针对R-CNN多次使用CNN提取特征,有重复计算的弊端,SPP-Net提出的方法是,在原图上只提取一次特征,然后采用映射的方式,找到region在feature map上的映射区域,再将该区域送到分类器(SPP-Net使用的依然是svm)中进行训练。另外,SPP-Net所设计的网络架构(SPP)可以处理任意尺寸的输入图片,而不需要像R-CNN那样,需要事先对region进行crop/warp操作。

结果显示,由于提取特征时可以共享特征,该方法相较于R-CNN,继降低了耗时,也提升了检测精度。

3. Fast R-CNN:

这篇文章综合考虑了R-CNN和SPP-Net的优缺点,网络设计了一种ROI Pooling Layer(其实就是1个level的SPP)。这篇文章主要的共享是,将bbox回归和cls回归放在一起处理。

4. Faster R-CNN

提出了RPN网络,能够自己学习产生region proposals。实际上就是RPN+Fast R-CNN。


1.YOLO & YOLOv2

(1)边框定位不够精准,尤其是小目标

(2)目标检出率低,尤其是小目标

 (3)误报少

(4)耗时少

2. SSD

(1)边框定位准

(2)目标检出率高

(3)误报相较YOLO多

(4)耗时多

3. faster- rcnn

(1)边框定位准

(2)目标检测率高

(3)耗时高

(4)训练时间长

(5)误报相较YOLO高

关于边框回归的原理解释,参考下边这个链接

http://caffecn.cn/?/question/160


评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值