题目:求解微分方程 d 2 y d t + 4 d y d t + 3 y = 3 \frac{d^{2}y}{dt}+4\frac{dy}{dt}+3y=3 dtd2y+4dtdy+3y=3;其中初始条件为: y ( 0 ) = 0.5 y{}(0)=0.5 y(0)=0.5, y ′ ( 0 ) = 0 y{}'(0)=0 y′(0)=0
1、画框图
simulink中对微分方程的求解往往是利用积分而不是微分,先将微分方程按最高阶导数写在左边,其余写在右边的形式列写如下:
d
2
y
d
t
=
3
−
4
d
y
d
x
−
3
y
\frac{d^{2}y}{dt}=3-4\frac{dy}{dx}-3y
dtd2y=3−4dxdy−3y
参照该式画如下框图:
框图要点如下:
1、输入在左输出在右;
2、
∑
\sum
∑后面紧接着的输出即为最高阶导数,经多次积分后得到输出;
3、
d
2
y
d
t
=
3
−
4
d
y
d
t
−
3
y
\frac{d^{2}y}{dt}=3-4\frac{dy}{dt}-3y
dtd2y=3−4dtdy−3y中的3在
∑
\sum
∑的左边不能忘记;
4、等号右边减去的其余两项在乘以相应的系数后负反馈给
∑
\sum
∑。
2、依据框图构建模型
根据框图在simulink中构建如下模型:
应注意初始条件中
y
(
0
)
=
0.5
y{}(0)=0.5
y(0)=0.5,所以应该双击第二个积分模块并将初始条件Initial condition设置为0.5.
运行仿真后双击示波器模块结果如下: