记一次动态规划优化的过程

本文探讨LeetCode中的53题——最大子序列和,通过逐步优化动态规划解法,从原始状态转移方程到节省空间的优化过程,提升代码可读性。
摘要由CSDN通过智能技术生成

优化题目:LeetCode--53. Maximum Subarray

本题也是我们熟知的最大子序列和,题目如下:

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

可能大家都已经知道最优解了,并且程序还特别的漂亮,比如我个人是比较喜欢这一版的:

class Solution {
    public int maxSubArray(int[] nums) {
        if(nums == null || nums.length < 1) {
            return 0;
        }
        int res = Integer.MIN_VALUE;
        int sum = 0;
        for(int num : nums) {
            sum += num;
            res = Math.max(res, sum);
            sum = Math.max(0, sum);
     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值