频谱论文:基于残差自编码器的电磁频谱地图构建方法

#频谱#

张晗,韩宇,姜航等.基于残差自编码器的电磁频谱地图构建方法[J].无线电通信技术,2023,49(02):255-261 (哈尔滨工程大学)

研究内容

        针对实际复杂场景下频谱地图构建精度低的问题,提出了一种基于残差自编码器的频谱地图构建方法。在输入中添加一个二进制的掩码用以区分输入缺失位置和测量值。
        本文是一般性的构建神经网络做事情的套路。

分析

  • 1. 传统的插值算法不足:在一些复杂场景下,特别是传感器分布较为稀疏时,插值算法难以准确地估计一些敏感位置的频谱PSD,导致插值算法在一些细节上估计误差偏高。
  • 2. 频谱地图使用dBm为单位的原因:使用对数单位 dBmW(简称 dBm),取代了自然功率单位,这样可以避免数据分布不均所带来的性能损失。
  • 3.使用掩码的作用:基于深度学习的模型仍没有考虑 Ω。 也就是说网络无法区分测量值与填充值,因此填充性能较差。 本文参考了图像修复领域的经验,添加了一个二进制的掩码作为输入的另一个维度。

信息

一个开源的频谱地图数据集:Remcom 公司的 Wireless InSite 软件

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch是一个流行的深度学习框架,可以用于实现各种神经网络模型,包括残差自编码器残差自编码器是一种特殊的自编码器,通过引入残差连接来提高模型的性能。 下面是使用PyTorch实现残差自编码器的一般步骤: 1. 导入所需的库和模块: ```python import torch import torch.nn as nn import torch.optim as optim ``` 2. 定义残差块(Residual Block): ```python class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) out += residual out = self.relu(out) return out ``` 3. 定义残差自编码器模型: ```python class ResidualAutoencoder(nn.Module): def __init__(self): super(ResidualAutoencoder, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(8, 16, kernel_size=2, stride=2), nn.ReLU(inplace=True), nn.ConvTranspose2d(16, 1, kernel_size=2, stride=2), nn.Sigmoid() ) def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded ``` 4. 定义训练过程: ```python def train(model, train_loader, criterion, optimizer, num_epochs): model.train() for epoch in range(num_epochs): running_loss = 0.0 for data in train_loader: inputs, _ = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, inputs) loss.backward() optimizer.step() running_loss += loss.item() print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, running_loss/len(train_loader))) # 使用示例 model = ResidualAutoencoder() criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) train(model, train_loader, criterion, optimizer, num_epochs=10) ``` 这是一个简单的残差自编码器的实现示例,你可以根据自己的需求进行修改和扩展。希望对你有帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值