问题描述
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution.
Example:
Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].
UPDATE (2016/2/13):
The return format had been changed to zero-based indices. Please read the above updated description carefully.
主要采用的思想
采用hash表的思想,用一个hash函数把每一个值映射到表上
其中hash函数为 h(n) = target-n+SHIFT
其中n为数组中的一个数,target为目标和,SHIFT为一个偏移量(之所以要有偏移是因为数组没有负数的下标,而target-n可能为负数)
代码
public class Solution {
public int[] twoSum(int[] nums, int target) {
int[] result = new int[2];
//get the max and min number of array nums[]
int length = nums.length;
int max=nums[0];
int min=nums[0];
for(int j=1; j<length; j++){
if(nums[j]>max)
max = nums[j];
else if(nums[j]<min)
min = nums[j];
}
//build the hash table
int htableLen;
final int SHIFT;
if(min < 0){
htableLen = max-min+1;
SHIFT = -min;
}else{
htableLen = max+1;
SHIFT = 0;
}
int[] htable = new int[htableLen];
for(int j=0; j<htableLen; j++)//initialize the hashtable
htable[j] = -1;
int hashV;
int num;
for(int i=0; i<length; i++){
num = nums[i];
hashV = target - num + SHIFT;
if(htable[num + SHIFT] != -1){//means that the peer number is here
result[0]=htable[num + SHIFT];
result[1]=i;
return result;
}else if(hashV>=0&&hashV<htableLen){//be sure that the hash value is in the bound of hash table
htable[hashV] = i;
}
}
return result;
}
}
运行结果
用大量空间换取时间,速度挺感人的。。。