[NOIP2000 提高组]-乘积最大:隔板法-DFS搜索
[NOIP2000 提高组] 乘积最大
题目描述
今年是国际数学联盟确定的“ 2000 ――世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰 90 周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友 XZ 也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:
设有一个长度为 N N N 的数字串,要求选手使用 K K K 个乘号将它分成 K + 1 K+1 K+1 个部分,找出一种分法,使得这 K + 1 K+1 K+1 个部分的乘积能够为最大。
同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:
有一个数字串: 312 312 312, 当 N = 3 , K = 1 N=3,K=1 N=3,K=1 时会有以下两种分法:
- 3 × 12 = 36 3 \times 12=36 3×12=36
- 31 × 2 = 62 31 \times 2=62 31×2=62
这时,符合题目要求的结果是: 31 × 2 = 62 31 \times 2 = 62 31×2=62
现在,请你帮助你的好朋友 XZ 设计一个程序,求得正确的答案。
输入格式
程序的输入共有两行:
第一行共有 2 2 2 个自然数 N , K N,K N,K( 6 ≤ N ≤ 40 , 1 ≤ K ≤ 6 6≤N≤40,1≤K≤6 6≤N≤40,1≤K≤6)
第二行是一个长度为 N N N 的数字串。
输出格式
结果显示在屏幕上,相对于输入,应输出所求得的最大乘积(一个自然数)。
样例 #1
样例输入 #1
4 2
1231
样例输出 #1
62
组合数学-隔板法
插空法,数学术语,是用来解决某些元素不相邻的排列组合题,即不邻问题。如果最左最右不能插入只能在中间插入,也可叫做隔板法。
对于一个长度为n数字字符串,有n-1个空隙可以插入乘号。这个可以看做是在n-1个空隙中插入k(k<=n-1)个板的组合问题。具体有多少种组合方案可以通过DFS搜索得到。而组合方案数目为: C n − 1 k C_{n-1}^k Cn−1k
解题思路
- 先要得到所有插入乘号的具体方案。这里使用DFS搜索实现。
- 其次用枚举遍历所有插入方案,计算方案对应的乘积。求出最值。
- 这里要注意数字的长度最多40,所以要用高精度大数相除。
具体代码
package main
import (
"fmt"
"strconv"
)
var n, k int
var ans = make([][]int, 0) // 储存总方案
var temp = make([]int, 0) // 临时方案
// DFS搜索隔板方案
func DFS(x int) {
if x >= n {
return
}
if len(temp) == k {
tempcp := make([]int, k)
copy(tempcp, temp)
ans = append(ans, tempcp)
return
}
for i := x; i < n-1; i++ {
temp = append(temp, i)
DFS(i + 1)
temp = temp[0 : len(temp)-1]
}
}
// 求乘积
func mult(s string, spl []int) string {
res, now := "1", 0
for i := 0; i < len(spl); i++ {
num := s[now : spl[i]+1]
res = times(res, num)
now = spl[i] + 1
}
num := s[now:n]
res = times(res, num)
return res
}
// 大数相除
func times(s1, s2 string) string {
if s1 == "0" || s2 == "0" {
return "0"
}
res := ""
l1, l2 := len(s1), len(s2)
num1, num2, num3 := make([]int, l1), make([]int, l2), make([]int, l1+l2)
for i := 0; i < l1; i++ {
num1[i] = int(s1[l1-i-1] - '0')
}
for i := 0; i < l2; i++ {
num2[i] = int(s2[l2-i-1] - '0')
}
for i := 0; i < l1; i++ {
for j := 0; j < l2; j++ {
num3[i+j] += num1[i] * num2[j]
num3[i+j+1] += num3[i+j] / 10
num3[i+j] %= 10
}
}
if num3[l1+l2-1] != 0 {
res += strconv.Itoa(num3[l1+l2-1])
}
for i := l1 + l2 - 2; i >= 0; i-- {
res += strconv.Itoa(num3[i])
}
return res
}
func max(a, b string) string {
l1, l2 := len(a), len(b)
if l1 > l2 {
return a
} else if l1 < l2 {
return b
} else {
if a > b {
return a
}
return b
}
}
func main() {
var s string
res := "0"
fmt.Scan(&n, &k)
fmt.Scan(&s)
DFS(0)
for i := 0; i < len(ans); i++ {
res = max(res, mult(s, ans[i]))
}
fmt.Println(res)
}