[NOIP2000 提高组]-乘积最大:隔板法-DFS搜索-Go语言

[NOIP2000 提高组]-乘积最大:隔板法-DFS搜索

[NOIP2000 提高组] 乘积最大

题目描述

今年是国际数学联盟确定的“ 2000 ――世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰 90 周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友 XZ 也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:

设有一个长度为 N N N 的数字串,要求选手使用 K K K 个乘号将它分成 K + 1 K+1 K+1 个部分,找出一种分法,使得这 K + 1 K+1 K+1 个部分的乘积能够为最大。

同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:

有一个数字串: 312 312 312, 当 N = 3 , K = 1 N=3,K=1 N=3,K=1 时会有以下两种分法:

  1. 3 × 12 = 36 3 \times 12=36 3×12=36
  2. 31 × 2 = 62 31 \times 2=62 31×2=62

这时,符合题目要求的结果是: 31 × 2 = 62 31 \times 2 = 62 31×2=62

现在,请你帮助你的好朋友 XZ 设计一个程序,求得正确的答案。

输入格式

程序的输入共有两行:

第一行共有 2 2 2 个自然数 N , K N,K N,K 6 ≤ N ≤ 40 , 1 ≤ K ≤ 6 6≤N≤40,1≤K≤6 6N40,1K6

第二行是一个长度为 N N N 的数字串。

输出格式

结果显示在屏幕上,相对于输入,应输出所求得的最大乘积(一个自然数)。

样例 #1

样例输入 #1

4  2
1231

样例输出 #1

62

组合数学-隔板法

插空法,数学术语,是用来解决某些元素不相邻的排列组合题,即不邻问题。如果最左最右不能插入只能在中间插入,也可叫做隔板法。

对于一个长度为n数字字符串,有n-1个空隙可以插入乘号。这个可以看做是在n-1个空隙中插入k(k<=n-1)个板的组合问题。具体有多少种组合方案可以通过DFS搜索得到。而组合方案数目为: C n − 1 k C_{n-1}^k Cn1k

image-20220624094007455

解题思路

  • 先要得到所有插入乘号的具体方案。这里使用DFS搜索实现。
  • 其次用枚举遍历所有插入方案,计算方案对应的乘积。求出最值。
  • 这里要注意数字的长度最多40,所以要用高精度大数相除。

具体代码

package main

import (
	"fmt"
	"strconv"
)

var n, k int
var ans = make([][]int, 0)	// 储存总方案
var temp = make([]int, 0)	// 临时方案

// DFS搜索隔板方案
func DFS(x int) {
	if x >= n {
		return
	}
	if len(temp) == k {
		tempcp := make([]int, k)
		copy(tempcp, temp)
		ans = append(ans, tempcp)
		return
	}
	for i := x; i < n-1; i++ {
		temp = append(temp, i)
		DFS(i + 1)
		temp = temp[0 : len(temp)-1]
	}
}

// 求乘积
func mult(s string, spl []int) string {
	res, now := "1", 0
	for i := 0; i < len(spl); i++ {
		num := s[now : spl[i]+1]
		res = times(res, num)
		now = spl[i] + 1
	}
	num := s[now:n]
	res = times(res, num)
	return res
}

// 大数相除
func times(s1, s2 string) string {
	if s1 == "0" || s2 == "0" {
		return "0"
	}
	res := ""
	l1, l2 := len(s1), len(s2)
	num1, num2, num3 := make([]int, l1), make([]int, l2), make([]int, l1+l2)
	for i := 0; i < l1; i++ {
		num1[i] = int(s1[l1-i-1] - '0')
	}
	for i := 0; i < l2; i++ {
		num2[i] = int(s2[l2-i-1] - '0')
	}
	for i := 0; i < l1; i++ {
		for j := 0; j < l2; j++ {
			num3[i+j] += num1[i] * num2[j]
			num3[i+j+1] += num3[i+j] / 10
			num3[i+j] %= 10
		}
	}
	if num3[l1+l2-1] != 0 {
		res += strconv.Itoa(num3[l1+l2-1])
	}
	for i := l1 + l2 - 2; i >= 0; i-- {
		res += strconv.Itoa(num3[i])
	}
	return res
}

func max(a, b string) string {
	l1, l2 := len(a), len(b)
	if l1 > l2 {
		return a
	} else if l1 < l2 {
		return b
	} else {
		if a > b {
			return a
		}
		return b
	}
}

func main() {
	var s string
	res := "0"
	fmt.Scan(&n, &k)
	fmt.Scan(&s)
	DFS(0)
	for i := 0; i < len(ans); i++ {
		res = max(res, mult(s, ans[i]))
	}
	fmt.Println(res)
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值