Google-Gemma 3

1. 模型概述

Gemma 3 是谷歌最新推出的开源多模态大模型,旨在为开发者提供高性能、低成本的 AI 解决方案。作为 Gemma 系列的第三代产品,Gemma 3 在多模态能力、语言支持以及模型效率方面实现了显著突破,成为全球顶尖开源模型之一。

2. 模型架构

Gemma 3 采用了解码器 Transformer 结构,并进行了创新和优化以应对长上下文带来的内存爆炸难题。其主要架构特点包括:

  • 分组查询注意力(GQA):提高了模型的并行计算效率。

  • 后归一化和前归一化:结合 RMSNorm 提高模型的稳定性和收敛速度。

  • 局部和全局自注意力层交替排列:每 5 层局部层后接 1 层全局层,模型的第一层为局部层,以更好地处理长上下文。

3. 功能与特点

  • 多参数规模:Gemma 3 提供 10 亿、40 亿、120 亿和 270 亿四种参数规模的模型,开发者可以根据硬件条件和性能需求灵活选择。

  • 多模态能力:支持文本和图像输入,能够处理图像描述生成、视频内容分析、跨模态问答等任务。集成了定制版的 SigLIP 视觉编码器,通过 CLIP 损失的变体进行训练,提高了模型对图像内容的理解能力。

  • 长上下文支持:支持最长 128K 个 token 的上下文窗口(10 亿参数模型为 32K),在全局自注意力层上提高了 RoPE 基础频率,并采用了位置插值方法扩展全局自注意力层的跨度。

  • 多语言支持:支持超过 140 种语言,其中 35 种语言开箱即用,大大降低了多语言开发的门槛。

  • 高效推理:即使最大的 270 亿参数模型,也只需要一张 H100 GPU 即可高效推理。

  • 函数调用与结构化输出:支持函数调用和结构化输出,帮助开发者实现任务自动化并构建智能体验。

  • 量化模型:推出了官方量化版本,在保持高精度的同时减少模型大小和计算需求。

4 Gemma 3 核心技术

Gemma 3 是谷歌推出的一款先进的开源人工智能模型,它在之前版本的基础上进行了多项技术改进,主要集中在三个方面:更长的上下文长度、多模态处理能力和多语言支持。以下是关于“更长的上下文长度”方面的详细解释:

4.1 更长的上下文长度

  • 无需从头重新训练即可扩展

    • 初始预训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据分析能量站

谢谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值