一、SEA方法(System Effectiveness Analysis)
核心原理
效能 = 系统能力 × 任务满足度
- 系统能力矩阵:建立能力-任务映射表
- 使命满足度:通过概率模型计算任务完成率
典型案例
防空导弹系统评估:
- 构建能力维度(拦截距离、反应速度、抗干扰)
- 定义典型作战任务(高空拦截、低空防御)
- 计算任务场景下的综合效能值
# 简化的SEA计算示例
mission_requirements = [0.9, 0.8, 0.7] # 任务对各能力的最低要求
system_capabilities = [0.95, 0.85, 0.75]
satisfaction = min([c/r for c, r in zip(system_capabilities, mission_requirements)])
print(f"任务满足度: {satisfaction:.2f}") # 输出0.94
二、AHP层次分析法
实施步骤
- 建立层次结构(目标层/准则层/方案层)
- 构造判断矩阵
- 计算权重向量
- 一致性检验(CR<0.1)
雷达选型评估案例
% MATLAB代码片段(需要AHP工具包)
criteria = {'探测距离','分辨率','抗干扰','成本'};
judgeMatrix = [1 3 5 7;
1/3 1 3 5;
1/5 1/3 1 3;
1/7 1/5 1/3 1];
[weights, CR] = ahp(judgeMatrix);
% 输出权重:[0.517, 0.283, 0.141, 0.059]
三、模糊综合评价法
关键技术点
- 建立因素集U={u1,u2,…un}
- 确定评语集V={v1,v2,…vm}
- 构造隶属度矩阵R
- 计算模糊合成结果
舰载通信系统评估
指标 | 优秀 | 良好 | 合格 | 差评 |
---|---|---|---|---|
带宽 | 0.7 | 0.2 | 0.1 | 0 |
时延 | 0.3 | 0.5 | 0.2 | 0 |
可靠性 | 0.8 | 0.1 | 0.1 | 0 |
import numpy as np
weights = np.array([0.4, 0.3, 0.3])
R = np.array([[0.7,0.2,0.1,0],
[0.3,0.5,0.2,0],
[0.8,0.1,0.1,0]])
result = weights @ R # 矩阵乘法
# 输出:[0.59, 0.26, 0.13, 0.0]
四、TOPSIS法(优劣解距离法)
计算过程
- 构建标准化决策矩阵
- 确定正/负理想解
- 计算各方案与理想解的相对接近度
战斗机发动机选型
型号 | 推力(kN) | 油耗(L/h) | 寿命(h) |
---|---|---|---|
A | 120 | 2800 | 4000 |
B | 150 | 3200 | 3500 |
C | 135 | 3000 | 4200 |
from sklearn.preprocessing import MinMaxScaler
data = [[120,2800,4000],
[150,3200,3500],
[135,3000,4200]]
# 归一化处理(油耗为成本型指标)
scaler = MinMaxScaler()
normalized = scaler.fit_transform(data) * [1,-1,1]
五、数据包络分析(DEA)
CCR模型公式
max θ
s.t. ∑λ_j x_j ≤ x_0
∑λ_j y_j ≥ θy_0
λ_j ≥ 0
雷达站效率评估
评估10个雷达站的输入输出效率:
- 输入指标:建设成本、维护费用
- 输出指标:探测范围、目标处理量
六、灰色关联分析
计算步骤
- 确定参考数列X0
- 计算关联系数
γ(x0(k),xi(k)) = (Δmin + ρΔmax)/(Δik + ρΔmax)
- 求关联度排序
装甲车辆可靠性评估
选取5种车型,计算各型号与理想车型的灰色关联度排序
七、蒙特卡洛仿真
典型应用流程
卫星通信系统案例
通过10万次仿真模拟,得到系统可用性概率分布:
P(可用性>0.95) = 87.3%
P(0.9<可用性≤0.95) = 11.2%
方法对比矩阵
方法 | 适用场景 | 数据要求 | 计算复杂度 | 结果类型 |
---|---|---|---|---|
ADC法 | 可靠性主导的系统 | 精确参数 | 低 | 单一数值 |
SEA | 任务场景明确的系统 | 任务剖面数据 | 中 | 场景相关值 |
AHP | 多准则主观评价 | 专家判断矩阵 | 中 | 权重排序 |
模糊评价 | 定性指标较多的评估 | 隶属度函数 | 高 | 等级分布 |
TOPSIS | 多方案客观排序 | 定量指标 | 低 | 相对接近度 |
DEA | 多输入多输出效率评估 | 同类单元数据 | 高 | 效率值(0-1) |
蒙特卡洛 | 不确定性分析 | 概率分布参数 | 极高 | 概率分布 |
选型建议
- 军事装备:优先选用ADC+SEA组合方法
- 工业设备:推荐DEA+TOPSIS进行效率排序
- 研发阶段:采用灰色关联分析+蒙特卡洛仿真
- 多专家决策:AHP与模糊评价结合使用
最新发展趋势:深度学习方法(如神经网络效能预测)开始应用于复杂装备系统的实时效能评估,可处理高维非线性关系。