LeetCode 172. Factorial Trailing Zeroes

题目:

给定一个整数n,返回以n结尾的0的个数!

Given an integer n, return the number of trailing zeroes in n!.

Input: 3    Output: 0   Explanation: 3! = 6, no trailing zero.
Input: 5    Output: 1   Explanation: 5! = 120, one trailing zero.
Note: Your solution should be in logarithmic time complexity.

参考:

https://www.cnblogs.com/grandyang/p/4219878.html

 

思路:

找乘数中10的个数,而10可分解为2和5,而我们可知2的数量又远大于5的数量,那么此题即便为找出5的个数。仍需注意的一点就是,像25,125,这样的不只含有一个5的数字需要考虑进去

以n=52为例

res += n / 5 —— 表示在该轮中,5的个数,n=52时,res = res+10,因为在该轮中,有10个为5倍数的数

n /= 5 ——将n的范围压缩,每个范围表示一个1~5的小范围,用于在下一轮求这些小范围内有多少个能再被5整除的数

(如n=52,则可分为1~5,6~10,11~15,16~20……,46~50,因为51~52没有,所以不计算,对可被多次除的数,如25,在21~25中,50在46~50中,在第二轮时,需要求的是能被25整除的数,这些数也是每5个小范围中才存在一个,所以用n=n/5来压缩范围)

循环直到n==0

 

代码:

class Solution {
    public int trailingZeroes(int n) {
        int res = 0;
        while (n>0) {
            res += n / 5;
            n /= 5;
        }
        return res;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值