目录
全局唯一ID
每个店铺都可以发布优惠券:
当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些问题:
- id的规律性太明显
- 受单表数据量的限制
场景分析:如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适。
场景分析二:随着我们商城规模越来越大,mysql的单表的容量不宜超过500W,数据量过大之后,我们要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。
全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:
为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:
ID的组成部分:符号位:1bit,永远为0
时间戳:31bit,以秒为单位,可以使用69年
序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID
Redis实现全局唯一Id
ID生成器具体实现
@Component
public class RedisIdWorker {
/**
* 开始时间戳
*/
private static final long BEGIN_TIMESTAMP = 1640995200L;
/**
* 序列号位数
*/
private static final int COUNT_BITS = 32;
private StringRedisTemplate stringRedisTemplate;
public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}
public long nextId(String keyPrefix){
//生成时间戳
LocalDateTime now = LocalDateTime.now();
long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
long timestamp = nowSecond - BEGIN_TIMESTAMP;
//生成序列号
String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
long count = stringRedisTemplate.opsForValue().increment("irc:" + keyPrefix + ":" + date);
return timestamp << COUNT_BITS | count;
}
}
测试类
@Test
void testIdWorker() throws InterruptedException {
CountDownLatch latch = new CountDownLatch(300);
Runnable task = () -> {
for (int i = 0; i < 100; i++) {
long id = redisIdWorker.nextId("order");
System.out.println("id = " + id);
}
latch.countDown();
};
long begin = System.currentTimeMillis();
for (int i = 0; i < 300; i++) {
es.submit(task);
}
latch.await();
long end = System.currentTimeMillis();
System.out.println("time = " + (end - begin));
}
添加优惠卷
每个店铺都可以发布优惠券,分为平价券和特价券。平价券可以任意购买,而特价券需要秒杀抢购:
@PostMapping("seckill")
public Result addSeckillVoucher(@RequestBody Voucher voucher) {
voucherService.addSeckillVoucher(voucher);
return Result.ok(voucher.getId());
}
tb_voucher:优惠券的基本信息,优惠金额、使用规则等
tb_seckill_voucher:优惠券的库存、开始抢购时间,结束抢购时间,特价优惠券才需要填写这些信息
新增普通卷代码: VoucherController
@PostMapping
public Result addVoucher(@RequestBody Voucher voucher) {
voucherService.save(voucher);
return Result.ok(voucher.getId());
}
新增秒杀卷代码:VoucherController
@PostMapping("seckill")
public Result addSeckillVoucher(@RequestBody Voucher voucher) {
voucherService.addSeckillVoucher(voucher);
return Result.ok(voucher.getId());
}
VoucherServiceImpl
代码
@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
// 保存优惠券
save(voucher);
// 保存秒杀信息
SeckillVoucher seckillVoucher = new SeckillVoucher();
seckillVoucher.setVoucherId(voucher.getId());
seckillVoucher.setStock(voucher.getStock());
seckillVoucher.setBeginTime(voucher.getBeginTime());
seckillVoucher.setEndTime(voucher.getEndTime());
seckillVoucherService.save(seckillVoucher);
// 保存秒杀库存到Redis中
stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}
实现秒杀下单
下单核心思路:当我们点击抢购时,会触发右侧的请求,我们只需要编写对应的controller即可
秒杀下单应该思考的内容:
下单时需要判断两点:
- 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
- 库存是否充足,不足则无法下单
下单核心逻辑分析:
当用户开始进行下单,我们应当去查询优惠卷信息,查询到优惠卷信息,判断是否满足秒杀条件
比如时间是否充足,如果时间充足,则进一步判断库存是否足够,如果两者都满足,则扣减库存,创建订单,然后返回订单id,如果有一个条件不满足则直接结束。
VoucherOrderServiceImpl
实现代码
@Override
public Result seckillVoucher(Long voucherId) {
//查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
//判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
//尚未开始
return Result.fail("秒杀尚未开始!");
}
//判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
//尚未开始
return Result.fail("秒杀已经结束!");
}
//判断库存是否充足
if (voucher.getStock() < 1) {
//库存不足
return Result.fail("库存不足!");
}
//扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
//创建订单
VoucherOrder voucherOrder = new VoucherOrder();
//订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
//用户id
Long userId = UserHolder.getUser().getId();
voucherOrder.setUserId(userId);
//代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
return Result.ok(orderId);
}
库存超卖问题分析
有关超卖问题分析:在我们原有代码中是这么写的
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。
超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:而对于加锁,我们通常有两种解决方案
乐观锁解决超卖问题
修改代码方案
VoucherOrderServiceImpl 在扣减库存时,改为:
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update().gt("stock",0);
优惠券秒杀-一人一单
需求:修改秒杀业务,要求同一个优惠券,一个用户只能下一单
一人一单流程图
VoucherOrderServiceImpl
初步代码:增加一人一单逻辑
@Override
public Result seckillVoucher(Long voucherId) {
//查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
//判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
//尚未开始
return Result.fail("秒杀尚未开始!");
}
//判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
//尚未开始
return Result.fail("秒杀已经结束!");
}
//判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//一人一单逻辑
//用户id
Long userId = UserHolder.getUser().getId();
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
//判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
//扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
//创建订单
VoucherOrder voucherOrder = new VoucherOrder();
//订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
voucherOrder.setUserId(userId);
//代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
return Result.ok(orderId);
}
存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,但是乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁操作
注意:在这里提到了非常多的问题,首先我们的初始方案是封装了一个createVoucherOrder方法,同时为了确保他线程安全,在方法上添加了一把synchronized 锁
@Transactional
public synchronized Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
//查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
//判断是否存在
if (count > 0) {
//用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
//扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
//扣减失败
return Result.fail("库存不足!");
}
//创建订单
VoucherOrder voucherOrder = new VoucherOrder();
//订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
//用户id
voucherOrder.setUserId(userId);
//代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
//返回订单id
return Result.ok(orderId);
}
但是这样添加锁,锁的粒度太粗了,在使用锁过程中,控制锁粒度 是一个非常重要的事情,因为如果锁的粒度太大,会导致每个线程进来都会锁住,所以我们需要去控制锁的粒度,以下这段代码需要修改为: intern() 这个方法是从常量池中拿到数据,如果我们直接使用userId.toString() 他拿到的对象实际上是不同的对象,new出来的对象,我们使用锁必须保证锁必须是同一把,所以我们需要使用intern()方法
@Transactional
public Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
synchronized(userId.toString().intern()){
//查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
//判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
//扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
return Result.fail("库存不足!");
}
//创建订单
VoucherOrder voucherOrder = new VoucherOrder();
//订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
//用户id
voucherOrder.setUserId(userId);
//代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
//返回订单id
return Result.ok(orderId);
}
}