pytorch的各种loss

总计学习一下pytorch的各种loss函数:

转载自:https://zhuanlan.zhihu.com/p/61379965

目录

1.L1 loss

2.MSE Loss

3.CrossEntropy Loss

4.NLL Loss

5.Poisson Loss

6.KLDiv Loss

7.BCELoss

8.BCEwithLogitsLoss

9.MarginRanking Loss

10.HingeEmbeddingLoss

11.MultiLableMargin Loss

12.SmoothL1 Loss

13.SoftMargin Loss

14.MultiLabelSoftMargin Loss

15.CosineEmbedding Loss

16.MultiMargin Loss

17.TripletMarginLoss

18.CTCLoss


1.L1 loss

class torch.nn.L1Loss(size_average=None,reduce=None)

功能:计算output和target只差的绝对值,可选择返回同维度的tensor或者是一个标量。

计算公式:

preview

 参数:

reduce(bool)-返回值是否为标量,默认 为True

size_average(bool)-当reduce=True时有效。为True时,返回的loss为平均值;为False,返回的各样本的loss之和。

2.MSE Loss(L2 loss)

class torch.nn.MSELoss(size_average=None,reduce=None,reduction='elementwise_mean')

功能:计算output和target只差的平方,可选返回同维度tensor或者是一个标量。

计算公式:

preview

 参数:

reduce(bool)-返回值是否为标量,默认 为True

size_average(bool)-当reduce=True时有效。为True时,返回的loss为平均值;为False,返回的各样本的loss之和。

使用经验:在做模型蒸馏的时候,常用MSE loss(L2 loss);

3.CrossEntropy Loss

class torch.nn.CrossEbtropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='elementwise_mean')

功能:将输入经过softmax激活函数之后,再计算其与target的交叉熵损失 。即该方法将nn.LogSoftmax()和nn.NLLLoss进行了结合,严格意义上的交叉熵损失函数是nn.NLLLoss()。

补充:小谈交叉熵损失函数 交叉熵损失(cross-entropy Loss)又称之为对数似然损失(Log-likelihood Loss)、对数损失;二分类时还可称为逻辑斯谛回归损失(Logistic Loss)。交叉熵损失函数表达式L=-sigama(y_i*log(x_i))。pytorch这里不是严格意义的交叉熵损失函数,而是先将input经过softmax激活函数,将向量“归一化”成概率形式,然后再与target计算严格意义上交叉熵损失。再多分类任务中,经常采用softmax激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。所以需要softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算loss。再回顾pytorch的CrossEntropyLoss(),官方文档中提到的nn.LogSoftmax()和nn.NLLLoss()进行结合,nn.LogSoftmax()相当于激活函数,nn.NLLLoss()是损失函数,将其结合,完整的是否可以叫做softmax+交叉熵损失函数呢?

计算公式:

preview

参数:

weight(Tensor)-为每个类别的loss设置权限,常用于类别不均衡问题。weight必须是float类型的tensor,其长度要于类别C一致,即每一个类别都要设置weight。带weight的计算公式:(?原文没有公式)

 size_average(bool)-当reduce=True时有效。为True时,返回的loss为平均值;为False,返回的各样本的loss之和。

reduce(bool)-返回值是否为标量,默认为True;

ignore_index(int)-忽略某一类别,不计算其loss,其loss会为0,并且,在采用size_average时,不会计算那一类的loss,除的时候的分母也不会统计哪一类的样本。

补充:output不仅可以是向量,还可以是图片,即对图像进行像素点分类,这个例子可以从NLLLoss()中看到,还在图像分割当中很有用;

4.NLL Loss

class torch.nn.NLLLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='elementwise_mean')

功能:不好语言描述其功能!请看计算公式:loss(input,class)=-input[class].举个例,三分类任务,input=【-1.233,2.657,0.534】,真实标签为2(class=2),则loss为-0.534.就是对应类别上的输出,取一个负号!感觉被NLLLoss的名字欺骗。实际应用:常用于多分类任务,但是input在输入NLLLoss()之前,需要对input进行log_softmax函数激活,即将input转换成概率分布的形式,并且取对数。其实这些步骤在CrossEntropyLoss中就用,如果不想让网络的最后一层是log_softmaxc层的话,就可以采用CrossEntropyLoss完全代替此函数。

参数:

weight(Tensor)-为每个类别的loss设置权限,常用于类别不均衡问题。weight必须是float类型的tensor,其长度要与类别C一致,即每一个类别都要设置weight。

 size_average(bool)- 当reduce=True时有效。为True时,返回的loss为除以权重之和的平均值;为False时,返回的各样本的loss之和。

reduce(bool)- 返回值是否为标量,默认为True。

ignore_index(int)- 忽略某一类别,不计算其loss,其loss会为0,并且,在采用size_average时,不会计算那一类的loss,除的时候的分母也不会统计那一类的样本。

特别注意:当带上权重,reduce=True,size_average=True,其计算公式为:

preview

例:input = [[0.6,0.2,0.2],[0.4,1.2,0.4]] ,target = [0,1],weight = [0.6,0.2,0.2]

l1 = -0.6*0.6=-0.36  l2 = -1.2*0.2 = -0.24 loss = -0.36/(0.6+0.2) + (-0.24)/(0.6+0.2) = -0.75

5.Poisson Loss

class torch.nn.PoissonNLLLoss(log_input = True,full=False,size_average=None,eps=1e-08,reduce=None,reduction='elementwise_mean')

功能:用于target服从泊松分布的分类任务。

计算公式:

 previewpreview

参数:log_input(bool)-为True时,计算公式为:loss(input,target) =exp(input)-target*input;为False时,loss(input, target)=input - target*log(input+eps)

full(bool)-是否计算全部的loss。

例如,当采用斯特林公式近似阶乘项时,此为target*log(target)-target+0.5*log(2πtarget)eps(float)-当log_input=False时,用来防止计算log(0)。而增加的一个修正项。即loss(input,target)=input-target*log(input+eps)

size_average(bool)-当reduce=True时有效。为True时,返回loss为平均值;为False时,返回各样本的loss之和。

reduce(bool)-返回值是否为标量,默认为True

6.KLDiv Loss

class torch.nn.KLDivLoss(size_average=None,reduce=None,reduction='elementwise_mean')

功能:计算input和target之间的KL散度(Kullback-Leibler divergence) 

计算公式:

补充:KL散度(kullback-Leibler divergence)又称为相对熵(Relative Entropy),用于描述两个概率分布之间的差异。计算公式(离散时) :

其中p代表真实分布,q代表p的拟合分布,D(P||Q)表示当用概率分布q来拟合真实分布时,产生的信息损耗。这里的信息损耗,可以理解为损失,损失越低,拟合分布q越接近真实分布p。同时也可以从另外一个角度上观察这个公式,即计算的是p与q之间的对数差在p上的期望值。特别注意,D(p||q)!=D(q||p),其不具有对称性,因此不能称为K_L距离。

信息熵=交叉熵-相对熵 从信息论角度观察三者,其关系为信息熵=交叉熵-相对熵。在机器学习中,当训练数据固定,最小化相对熵D(p||q)等价于最小化交叉熵H(p,q)。

参数:

size_average(bool)-当reduce=True时有效。为True时,返回是各样本各loss之和。reduce(bool)-返回值是否为标量,默认为True。

使用注意事项:要想获得KL散度,需要如下操作:

1.reduce=True;size_average=False

2.计算得到的loss要对batch求平均

7.BCELoss

class torch.nn.BCELoss(weight=None,size_average=None,reduce=None,reduction='elementwise_mean')

功能:二分类任务时的交叉熵计算函数。此函数可以认为是nn.CrossEntropyLoss函数的特例。

其分类限定为二分类,y必须是{0,1}。还需要注意的是,input应该为概率分布的形式,这样才符合交叉熵的应用。所以在BCELoss之前,input一般为sigmoid激活层的输出,官方例子也要这样给的。该损失函数在自编码器中常用。计算公式:

 previewpreview

参数:

weight(Tensor)-为每个类别deloss设置权值,常用于类别不均衡问题。

 size_average(bool)-当reduce=True时有效。为True时,返回是各样本各loss之和。

reduce(bool)-返回值是否为标量,默认为True

8.BCEwithLogitsLoss

class troch.nn.BCEWithLogitsLoss(weight=None,size_average=None,reduce=None,reduction='elementwise_mean',pos_weight=None)

功能:将Sigmoid与BCELoss结合,类似于CrossEntropyLoss(将nn.LogSoftmax()和nn.NLLLoss()进行结合)。即input会经过Sigmoid激活函数,将input变为概率分布的形式。计算公式:

preview

\delta()表示Sigmoid函数,特别地,当设置weight时:

参数:

weight(Tensor)-:为batch中单个样本设置权值,If given,has to be a Tensor of size “nbatch”.

pos_weight -:正样本的权重,当p>1,当p<1,提高精确度。可达到权衡召回率(Recall)和精确度(precision)的作用。Must be a vector

with equal to the number of class。

size_average(bool)-当reduce=True时有效。为True时,返回是各样本各loss之和。

reduce(bool)-返回值是否为标量,默认为True

9.MarginRanking Loss

class torch.nn.MarginRankingLoss(margin=0,size_average=None, reduce=None, reduction='elementwise_mean')

功能: 计算两个向量之间的相似度,当两个向量之间的距离大于margin,则loss为正,小于margin,loss为0。

计算公式:

preview

y==1时,x1要比x2大,才不会有loss,反之,y==-1时,x1要比x2小,才不会有loss。

参数:

margin(float)- x1和x2之间的差异。

size_average(bool)- 当reduce=True时有效。为True时,返回的loss为平均值;为False时,返回的各样本的loss之和。

reduce(bool)- 返回值是否为标量,默认为True。

10.HingeEmbeddingLoss

class torch.nn.HingeEmbeddingLoss(margin=1.0, size_average=None, reduce=None, reduction='elementwise_mean')

功能: 未知。为折页损失的拓展,主要用于衡量两个输入是否相似。 used for learning nonlinear embeddings or semi-supervised 。

计算公式:

参数:

margin(float)- 默认值为1,容忍的差距。

size_average(bool)- 当reduce=True时有效。为True时,返回的loss为平均值;为False时,返回的各样本的loss之和。

reduce(bool)- 返回值是否为标量,默认为True。

11.MultiLableMargin Loss

class torch.nn.MultiLabelMarginLoss(size_average=None, reduce=None, reduction='elementwise_mean')

功能: 用于一个样本属于多个类别时的分类任务。例如一个四分类任务,样本x属于第0类,第1类,不属于第2类,第3类。

计算公式: 

where i==0 to x.size(0),j==0 to y.size(0),y[j]>=0,and i!=y[j] for all i ang j;

x[y[j]] 表示 样本x所属类的输出值,x[i]表示不等于该类的输出值。

参数:

size_average(bool)- 当reduce=True时有效。为True时,返回的loss为平均值;为False时,返回的各样本的loss之和。

reduce(bool)- 返回值是否为标量,默认为True。 Input: (C) or (N,C) where N is the batch size and C is the number of classes. Target: (C) or (N,C), same shape as the input.

12.SmoothL1 Loss

class torch.nn.SmoothL1Loss(size_average=None, reduce=None, reduction='elementwise_mean')

功能: 计算平滑L1损失,属于 Huber Loss中的一种(因为参数δ固定为1了)。

补充: Huber Loss常用于回归问题,其最大的特点是对离群点(outliers)、噪声不敏感,具有较强的鲁棒性。 公式为:

preview

 理解为,当误差绝对值小于δ,采用L2损失;若大于δ,采用L1损失。 回到SmoothL1Loss,这是δ=1时的Huber Loss。 计算公式为:

 

where Zi is given by:

 对应下图红色线:

preview

 参数: size_average(bool)- 当reduce=True时有效。为True时,返回的loss为平均值;为False时,返回的各样本的loss之和。 reduce(bool)- 返回值是否为标量,默认为True。

13.SoftMargin Loss

class torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction='elementwise_mean')

功能: Creates a criterion that optimizes a two-class classification logistic loss between input tensor xand target tensor y (containing 1 or -1).

计算公式:

 

参数: size_average(bool)- 当reduce=True时有效。为True时,返回的loss为平均值;为False时,返回的各样本的loss之和。 reduce(bool)- 返回值是否为标量,默认为True。 

14.MultiLabelSoftMargin Loss

class torch.nn.MultiLabelSoftMarginLoss(weight=None, size_average=None, reduce=None, reduction='elementwise_mean')

功能: SoftMarginLoss多标签版本,a multi-label one-versus-all loss based on max-entropy,

计算公式:

preview

参数: weight(Tensor)- 为每个类别的loss设置权值。weight必须是float类型的tensor,其长度要于类别C一致,即每一个类别都要设置有weight。

15.CosineEmbedding Loss

class torch.nn.CosineEmbeddingLoss(margin=0, size_average=None, reduce=None, reduction='elementwise_mean')

功能: 用Cosine函数来衡量两个输入是否相似。 used for learning nonlinear embeddings or semi-supervised 。

计算公式:

preview

margin(float)- : 取值范围[-1,1], 推荐设置范围 [0, 0.5]

size_average(bool)- 当reduce=True时有效。为True时,返回的loss为平均值;为False时,返回的各样本的loss之和。

reduce(bool)- 返回值是否为标量,默认为True。

16.MultiMargin Loss

class torch.nn.MultiMarginLoss(p=1, margin=1, weight=None, size_average=None, reduce=None, reduction='elementwise_mean')

功能: 计算多分类的折页损失。

计算公式:

preview

 

其中,0≤y≤x.size(1) ; i == 0 to x.size(0) and i≠y; p==1 or p ==2; w[y]为各类别的weight。

参数:

p(int)- 默认值为1,仅可选1或者2。

margin(float)- 默认值为1

weight(Tensor)- 为每个类别的loss设置权值。weight必须是float类型的tensor,其长度要于类别C一致,即每一个类别都要设置有weight。

size_average(bool)- 当reduce=True时有效。为True时,返回的loss为平均值;为False时,返回的各样本的loss之和。

reduce(bool)- 返回值是否为标量,默认为True。

17.TripletMarginLoss

class torch.nn.TripletMarginLoss(margin=1.0, p=2, eps=1e-06, swap=False, size_average=None, reduce=None, reduction='elementwise_mean')

功能: 计算三元组损失,人脸验证中常用。 如下图Anchor、Negative、Positive,目标是让Positive元和Anchor元之间的距离尽可能的小,Positive元和Negative元之间的距离尽可能的大。 

preview

从公式上看,Anchor元和Positive元之间的距离加上一个threshold之后,要小于Anchor元与Negative元之间的距离。

 

preview

计算公式: 

preview

参数:

margin(float)- 默认值为1

p(int)- The norm degree ,默认值为2

swap(float)– The distance swap is described in detail in the paper Learning shallow convolutional feature descriptors with triplet losses by V. Balntas, E. Riba et al. Default: False

size_average(bool)- 当reduce=True时有效。为True时,返回的loss为平均值;为False时,返回的各样本的loss之和。 reduce(bool)- 返回值是否为标量,默认为True。

preview

18.CTCLoss

nn.CTCLoss(blank=0, reduction='mean', zero_infinity=False)

 功能: Connectionist Temporal Classification。主要是解决时序类数据的分类问题,特别是label 和output 不对齐的问题(Alignment problem)

参考文献:Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Network

CTC算法全称叫:Connectionist temporal classification。从字面上理解它是用来解决时序类数据的分类问题。

 

  • 2
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值