deepin系统安装docker和nvidia-docker的步骤,请参考:deepin安装docker
我们从导入开始讲起,
1,导入一个镜像压缩包(pytorch-0.4.0_cuda9_cudnn7.tar)命名:
docker load < pytorch-0.4.0_cuda9_cudnn7.tar
2,进入docker的镜像环境中
nvidia-docker container run --rm -p 8440:3000 -it --ipc=host -v
/home/XXX/sdb/git:/XXX -v
/home/XXX/sdb/Caffe_Project/face_recognition:/XXX/data pytorch-
0.4.0_cuda9_cudnn7_mx90mkl:1.0 /bin/bash
(说明,上面的是一整句命名行,以上可以修改的部分
a)“8440”端口号,不要和同时使用3000端口号的人同名;
b)“/home/XXX/sdb/git” 我自己的工程地址
c)“/home/XXX/sdb/Caffe_Project/face_recognition ”我自己的数据地址
d)地址“/XXX”和“/XXX/data”是我自己命名的隐射到的docker的路径)
3,运行工程时,在docker中安装缺少的库,安装完成,工程运行无错,执行以下命名,查看当前镜像的ID:
sudo docker ps
4,然后进行镜像的commit和保存,保存的名称命名为“pytorch-0.4.0_cuda9_cudnn7_new:1.0”:
sudo docker commit 4ab605820684 pytorch-0.4.0_cuda9_cudnn7_new:1.0
5,用以下命名查看新的镜像是否保存成功:
sudo docker images
6,导出保存的最新镜像“pytorch-0.4.0_cuda9_cudnn7_new:1.0”,保存到指定的位置:
sudo docker save pytorch-0.4.0_cuda9_cudnn7_new:1.0 > /home/XXX/Downloads/pytorch-0.4.0_cuda9_cudnn7_new.tar
7,导出结束,可以看到保存的镜像压缩文件放在指定的位置。