贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。
朴素贝叶斯分类
借助例题进行分析
朴素贝叶斯算法的 朴素 一词 解释
那么这三个量是如何求得?
好的,上面我解释了为什么可以拆成分开连乘形式。那么下面我们就开始求解:
计算过程(略)
结果(关键)
算法评价
补充(了解)
在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数𝑌=𝑓(𝑋),要么是条件分布𝑃(𝑌|𝑋)。但是朴素贝叶斯却是生成方法,也就是直接找出特征输出Y和特征X的联合分布𝑃(𝑋,𝑌),然后用𝑃(𝑌|𝑋)=𝑃(𝑋,𝑌)/𝑃(𝑋)得出。
贝叶斯学派很古老,但是从诞生到一百年前一直不是主流。主流是频率学派。频率学派的权威皮尔逊和费歇尔都对贝叶斯学派不屑一顾,但是贝叶斯学派硬是凭借在现代特定领域的出色应用表现为自己赢得了半壁江山。
贝叶斯学派的思想可以概括为先验概率+数据=后验概率。也就是说我们在实际问题中需要得到的后验概率,可以通过先验概率和数据一起综合得到。数据大家好理解,被频率学派攻击的是先验概率,一般来说先验概率就是我们对于数据所在领域的历史经验,但是这个经验常常难以量化或者模型化,于是贝叶斯学派大胆的假设先验分布的模型,比如正态分布,beta分布等。这个假设一般没有特定的依据,因此一直被频率学派认为很荒谬。虽然难以从严密的数学逻辑里推出贝叶斯学派的逻辑,但是在很多实际应用中,贝叶斯理论很好用,比如垃圾邮件分类,文本分类。