机器学习实战刻意练习-- Task 3 朴素贝叶斯

Week 2

基于概率论的分类方法: 朴素贝叶斯

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。我们首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。

贝叶斯理论

假设我们现在有一个数据集,它由两类数据组成,数据分布如下图所示:
psbys
我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(x,y) 表示数据点 (x,y) 属于类别 2(图中三角形表示的类别)的概率,那么对于一个新数据点 (x,y),可以用下面的规则来判断它的类别:

  • 如果 p1(x,y) > p2(x,y) ,那么类别为1
  • 如果 p2(x,y) > p1(x,y) ,那么类别为2

也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。

条件概率

有一种有效计算条件概率的方法称为贝叶斯准则,贝叶斯准则告诉我们如何交换条件概率中的条件与结果,即如果已知 P(x|c),要求 P(c|x),那么可以使用下面的计算方法:
tjgl

使用条件概率来分类

上面我们提到贝叶斯决策理论要求计算两个概率 p1(x, y) 和 p2(x, y),这并不是贝叶斯决策理论的所有内容。使用 p1(x, y) 和 p2(x, y) 只是为了尽可能简化描述,而真正需要计算和比较的是 p(c1|x, y) 和 p(c2|x, y) 【意思是:给定某个由 x、y 表示的数据点,那么该数据点来自类别 c1 的概率和数据点来自类别 c2 的概率】

类似的我们由上述的贝叶斯准则得到:
在这里插入图片描述
下面的我们定义贝叶斯分类准则:

  • 如果 P(c1|x, y) > P(c2|x, y), 那么属于类别 c1;
  • 如果 P(c2|x, y) > P(c1|x, y), 那么属于类别 c2.

注:朴素贝叶斯分类器通常有两种实现方式: 一种基于伯努利模型实现,一种基于多项式模型实现。这里采用前一种实现方式。该实现方式中并不考虑词在文档中出现的次数,只考虑出不出现,因此在这个意义上相当于假设词是等权重的。

朴素贝叶斯是上面介绍的贝叶斯分类器的一个扩展,是用于文档分类的常用算法。下面我们会进行一些朴素贝叶斯分类的实践项目。

朴素贝叶斯 工作原理
提取所有文档中的词条并进行去重
获取文档的所有类别
计算每个类别中的文档数目
对每篇训练文档: 
    对每个类别: 
        如果词条出现在文档中-->增加该词条的计数值(for循环或者矩阵相加)
        增加所有词条的计数值(此类别下词条总数)
对每个类别: 
    对每个词条: 
        将该词条的数目除以总词条数目得到的条件概率(P(词条|类别))
返回该文档属于每个类别的条件概率(P(类别|文档的所有词条)
朴素贝叶斯 开发流程
收集数据: 可以使用任何方法。
准备数据: 需要数值型或者布尔型数据。
分析数据: 有大量特征时,绘制特征作用不大,此时使用直方图效果更好。
训练算法: 计算不同的独立特征的条件概率。
测试算法: 计算错误率。
使用算法: 一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴素贝叶斯分类器,不一定非要是文本。
朴素贝叶斯 算法特点
优点: 在数据较少的情况下仍然有效,可以处理多类别问题。
缺点: 对于输入数据的准备方式较为敏感。
适用数据类型: 标称型数据。

实战项目案例

项目案例1: 屏蔽社区留言板的侮辱性言论
项目概述:

构建一个快速过滤器来屏蔽在线社区留言板上的侮辱性言论。如果某条留言使用了负面或者侮辱性的语言,那么就将该留言标识为内容不当。对此问题建立两个类别: 侮辱类和非侮辱类,使用 1 和 0 分别表示。

开发流程

新建一个bayes.py文件,根据步骤输入下列代码。

from numpy import *

# 1)收集数据: 可以使用任何方法
# 词表到向量的转换函数 
def loadDataSet():
    """
    创建数据集
    :return: 单词列表postingList, 所属类别classVec
    """
    postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #[0,0,1,1,1......]
                   ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                   ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                   ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                   ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                   ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0, 1, 0, 1, 0, 1]  # 1 is abusive, 0 not
    return postingList, classVec

# 2)准备数据: 从文本中构建词向量
def createVocabList(dataSet):
    """
    获取所有单词的集合
    :param dataSet: 数据集
    :return: 所有单词的集合(即不含重复元素的单词列表)
    """
    vocabSet = set([])  # create empty set
    for document in dataSet:
        # 操作符 | 用于求两个集合的并集
        vocabSet = vocabSet | set(document)  # union of the two sets
    return list(vocabSet)


def setOfWords2Vec(vocabList, inputSet):
    """
    遍历查看该单词是否出现,出现该单词则将该单词置1
    :param vocabList: 所有单词集合列表
    :param inputSet: 输入数据集
    :return: 匹配列表[0,1,0,1...],其中 1与0 表示词汇表中的单词是否出现在输入的数据集中
    """
    # 创建一个和词汇表等长的向量,并将其元素都设置为0
    returnVec = [0] * len(vocabList)# [0,0......]
    # 遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else:
            print("the word: %s is not in my Vocabulary!" % word)
    return returnVec


# 3)分析数据: 检查词条确保解析的正确性
# 检查函数执行情况,检查词表,不出现重复单词,需要的话,可以对其进行排序。
>>> import bayes
>>> listOPosts, listClasses = bayes.loadDataSet()
>>> myVocalList = bayes.createVocabList(listOPosts)
>>> myVocalList
['please', 'is', 'my', 'so', 'help', 'dog', 'buying', 'quit', 'how', 'problems', 'cute', 'flea', 'has', 'stupid', 'him', 'take', 'steak', 'licks', 'worthless', 'dalmation', 'posting', 'mr', 'to', 'maybe', 'park', 'food', 'love', 'I', 'garbage', 'ate', 'stop', 'not']
# 检查函数有效性。
>>> bayes.setOfWords2Vec(myVocalList, listOPosts[0])
[1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> bayes.setOfWords2Vec(myVocalList, listOPosts[3])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]


# 4)训练算法: 从词向量计算概率
# 朴素贝叶斯分类器训练函数 
def trainNB0(trainMatrix, trainCategory):
    """
    训练数据原版
    :param trainMatrix: 文件单词矩阵 [[1,0,1,1,1....],[],[]...]
    :param trainCategory: 文件对应的类别[0,1,1,0....],列表长度等于单词矩阵数,其中的1代表对应的文件是侮辱性文件,0代表不是侮辱性矩阵
    :return:
    """
    # 文件数
    numTrainDocs = len(trainMatrix)
    # 单词数
    numWords = len(trainMatrix[0])
    # 侮辱性文件的出现概率,即trainCategory中所有的1的个数,
    # 代表的就是多少个侮辱性文件,与文件的总数相除就得到了侮辱性文件的出现概率
    pAbusive = sum(trainCategory) / float(numTrainDocs)
    # 构造单词出现次数列表
    p0Num = zeros(numWords) # [0,0,0,.....]
    p1Num = zeros(numWords) # [0,0,0,.....]
    # 整个数据集单词出现总数
    p0Denom = 0.0
    p1Denom = 0.0
    for i in range(numTrainDocs):
        # 遍历所有的文件,如果是侮辱性文件,就计算此侮辱性文件中出现的侮辱性单词的个数
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i] #[0,1,1,....]->[0,1,1,...]
            p1Denom += sum(trainMatrix[i])
        else:
            # 如果不是侮辱性文件,则计算非侮辱性文件中出现的侮辱性单词的个数
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    # 类别1,即侮辱性文档的[P(F1|C1),P(F2|C1),P(F3|C1),P(F4|C1),P(F5|C1)....]列表
    # 即 在1类别下,每个单词出现次数的占比
    p1Vect = p1Num / p1Denom# [1,2,3,5]/90->[1/90,...]
    # 类别0,即正常文档的[P(F1|C0),P(F2|C0),P(F3|C0),P(F4|C0),P(F5|C0)....]列表
    # 即 在0类别下,每个单词出现次数的占比
    p0Vect = p0Num / p0Denom
    return p0Vect, p1Vect, pAbusive

#运行代码
>>> import bayes
>>> from numpy import *
>>> import importlib
>>> importlib.reload(bayes)
<module 'bayes' from 'C:\\Users\\dell\\Desktop\\机器学习实战资料\\第四章 朴素贝叶斯\\bayes.py'>
>>> listOPosts, listClasses = bayes.loadDataSet()
>>> myVocalList = bayes.createVocabList(listOPosts)
>>> trainMat = []
>>> for postinDoc in listOPosts:
	trainMat.append(bayes.setOfWords2Vec(myVocalList, postinDoc))

	
>>> pOV, plV, pAb = bayes.trainNB0(trainMat, listClasses)
>>> pAb
0.5
>>> pOV
array([0.125     , 0.04166667, 0.04166667, 0.04166667, 0.04166667,
       0.04166667, 0.        , 0.04166667, 0.        , 0.        ,
       0.04166667, 0.04166667, 0.        , 0.        , 0.        ,
       0.04166667, 0.04166667, 0.        , 0.        , 0.04166667,
       0.04166667, 0.04166667, 0.04166667, 0.04166667, 0.04166667,
       0.        , 0.04166667, 0.08333333, 0.04166667, 0.        ,
       0.        , 0.04166667])
>>> plV
array([0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.05263158, 0.05263158, 0.15789474, 0.05263158,
       0.        , 0.        , 0.05263158, 0.10526316, 0.05263158,
       0.        , 0.        , 0.05263158, 0.05263158, 0.        ,
       0.        , 0.05263158, 0.        , 0.        , 0.        ,
       0.05263158, 0.10526316, 0.05263158, 0.        , 0.05263158,
       0.05263158, 0.        ])
       

# 5)测试算法: 根据现实情况修改分类器
# 朴素贝叶斯分类器训练函数 
def trainNB0(trainMatrix, trainCategory):
    """
    训练数据优化版本
    :param trainMatrix: 文件单词矩阵
    :param trainCategory: 文件对应的类别
    :return:
    """
    # 总文件数
    numTrainDocs = len(trainMatrix)
    # 总单词数
    numWords = len(trainMatrix[0])
    # 侮辱性文件的出现概率
    pAbusive = sum(trainCategory) / float(numTrainDocs)
    # 构造单词出现次数列表
    # p0Num 正常的统计
    # p1Num 侮辱的统计 
    # 避免单词列表中的任何一个单词为0,而导致最后的乘积为0,所以将每个单词的出现次数初始化为 1
    p0Num = ones(numWords)#[0,0......]->[1,1,1,1,1.....]
    p1Num = ones(numWords)
    # 整个数据集单词出现总数,2.0根据样本/实际调查结果调整分母的值(2主要是避免分母为0,当然值可以调整)
    # p0Denom 正常的统计
    # p1Denom 侮辱的统计
    p0Denom = 2.0
    p1Denom = 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            # 累加辱骂词的频次
            p1Num += trainMatrix[i]
            # 对每篇文章的辱骂的频次 进行统计汇总
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    # 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表
    p1Vect = log(p1Num / p1Denom)
    # 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表
    p0Vect = log(p0Num / p0Denom)
    return p0Vect, p1Vect, pAbusive

# 运行代码
>>> import bayes
>>> import importlib
>>> importlib.reload(bayes)
<module 'bayes' from 'C:\\Users\\dell\\Desktop\\机器学习实战资料\\第四章 朴素贝叶斯\\bayes.py'>
>>> bayes.testingNB()
['love', 'my', 'dalmation'] classified as:  0
['stupid', 'garbage'] classified as:  1

# 6)使用算法: 对社区留言板言论进行分类
# 朴素贝叶斯分类函数
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    """
    使用算法:
        # 将乘法转换为加法
        乘法:P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C)/P(F1F2...Fn)
        加法:P(F1|C)*P(F2|C)....P(Fn|C)P(C) -> log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
    :param vec2Classify: 待测数据[0,1,1,1,1...],即要分类的向量
    :param p0Vec: 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表
    :param p1Vec: 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表
    :param pClass1: 类别1,侮辱性文件的出现概率
    :return: 类别1 or 0
    """
    # 计算公式  log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
    # 使用 NumPy 数组来计算两个向量相乘的结果,这里的相乘是指对应元素相乘,即先将两个向量中的第一个元素相乘,然后将第2个元素相乘,以此类推。
    # 我的理解是:这里的 vec2Classify * p1Vec 的意思就是将每个词与其对应的概率相关联起来
    # 可以理解为 1.单词在词汇表中的条件下,文件是good 类别的概率 也可以理解为 2.在整个空间下,文件既在词汇表中又是good类别的概率
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else:
        return 0

def testingNB():
    """
    测试朴素贝叶斯算法
    """
    # 1. 加载数据集
    listOPosts, listClasses = loadDataSet()
    # 2. 创建单词集合
    myVocabList = createVocabList(listOPosts)
    # 3. 计算单词是否出现并创建数据矩阵
    trainMat = []
    for postinDoc in listOPosts:
        # 返回m*len(myVocabList)的矩阵, 记录的都是0,1信息
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    # 4. 训练数据
    p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
    # 5. 测试数据
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
    testEntry = ['stupid', 'garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
项目案例2: 使用朴素贝叶斯过滤垃圾邮件
项目概述:

完成朴素贝叶斯的一个最著名的应用: 电子邮件垃圾过滤。

开发流程:
# 1)收集数据: 提供文本文件
'''
文本文件内容如下:
Hi Peter,

With Jose out of town, do you want to
meet once in a while to keep things
going and do some interesting stuff?

Let me know
Eugene
'''
# 2)准备数据: 将文本文件解析成词条向量
# 使用正则表达式来切分文本
>>> mySent = 'This book is the best book on python or M.L. I have ever laid eyes upon.'
>>> mySent.split()
['This', 'book', 'is', 'the', 'best', 'book', 'on', 'python', 'or', 'M.L.', 'I', 'have', 'ever', 'laid', 'eyes', 'upon.']
>>> import re
>>> regEx = re.compile('\\W*')
>>> listOfTokens = regEx.split(mySent)
>>> listOfTokens
['', 'T', 'h', 'i', 's', '', 'b', 'o', 'o', 'k', '', 'i', 's', '', 't', 'h', 'e', '', 'b', 'e', 's', 't', '', 'b', 'o', 'o', 'k', '', 'o', 'n', '', 'p', 'y', 't', 'h', 'o', 'n', '', 'o', 'r', '', 'M', '', 'L', '', 'I', '', 'h', 'a', 'v', 'e', '', 'e', 'v', 'e', 'r', '', 'l', 'a', 'i', 'd', '', 'e', 'y', 'e', 's', '', 'u', 'p', 'o', 'n', '', '']


# 3)分析数据: 检查词条确保解析的正确性

# 4)训练算法: 使用我们之前建立的 trainNB0() 函数

# 5)测试算法: 使用朴素贝叶斯进行交叉验证
# 文件解析及完整的垃圾邮件测试函数
# 切分文本
def textParse(bigString):
    '''
    Desc:
        接收一个大字符串并将其解析为字符串列表
    Args:
        bigString -- 大字符串
    Returns:
        去掉少于 2 个字符的字符串,并将所有字符串转换为小写,返回字符串列表
    '''
    import re
    # 使用正则表达式来切分句子,其中分隔符是除单词、数字外的任意字符串
    listOfTokens = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok) > 2]

def spamTest():
    '''
    Desc:
        对贝叶斯垃圾邮件分类器进行自动化处理。
    Args:
        none
    Returns:
        对测试集中的每封邮件进行分类,若邮件分类错误,则错误数加 1,最后返回总的错误百分比。
    '''
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        # 切分,解析数据,并归类为 1 类别
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        classList.append(1)
        # 切分,解析数据,并归类为 0 类别
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    # 创建词汇表    
    vocabList = createVocabList(docList)
    trainingSet = list(range(50))
    testSet = []
    # 随机取 10 个邮件用来测试
    for i in range(10):
        # random.uniform(x, y) 随机生成一个范围为 x - y 的实数
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = setOfWords2Vec(vocabList, docList[docIndex])
        if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print('the errorCount is: ', errorCount)
    print('the testSet length is :', len(testSet))
    print('the error rate is :', float(errorCount)/len(testSet))
    
def testParseTest():
    print(textParse(open('email/ham/1.txt').read()))
# 6)使用算法: 构建一个完整的程序对一组文档进行分类,将错分的文档输出到屏幕上
>>> import bayes
>>> bayes.spamTest()
the errorCount is:  5
the testSet length is : 10
the error rate is : 0.5
>>> bayes.testParseTest()
[]
项目案例3: 使用朴素贝叶斯分类器从个人广告中获取区域倾向
项目概述:

广告商往往想知道关于一个人的一些特定人口统计信息,以便能更好地定向推销广告。

我们将分别从美国的两个城市中选取一些人,通过分析这些人发布的信息,来比较这两个城市的人们在广告用词上是否不同。如果结论确实不同,那么他们各自常用的词是哪些,从人们的用词当中,我们能否对不同城市的人所关心的内容有所了解。

开发流程
# 1)收集数据: 从 RSS 源收集内容,这里需要对 RSS 源构建一个接口
# 可用pip安装feedparser
>>> import feedparser
>>> ny = feedparser.parse('http://newyork.craigslist.org/stp/index.rss')

# 2)准备数据: 将文本文件解析成词条向量
# 将文本文件解析成 词条向量
def setOfWords2VecMN(vocaList, inputSet):
    returnVec = [0] * len(vocabList)   # 创建一个其中所含元素都为0的向量
    for word in inputSet:
        if word in vocaList:
            returnVec[vocabList.index(word)] += 1
    return returnVec
# 以上函数与之前案例的 setOfWords2Vec()几乎完全相同,唯一不同的是每当遇到一个单词时,它会增加词向量中的对应值,而不只是将对应的数值设为 1 。
# 创建一个包含在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
    vocabSet=set([])    #创建一个空集
    for document in dataSet:
        vocabSet=vocabSet|set(document)   #创建两个集合的并集
    return list(vocabSet)
def setOfWords2VecMN(vocabList,inputSet):
    returnVec=[0]*len(vocabList)  #创建一个其中所含元素都为0的向量
    for word in inputSet:
        if word in vocabList:
                returnVec[vocabList.index(word)]+=1
    return returnVec
    
# 文件解析
def textParse(bigString):
    import re
    listOfTokens=re.split(r'\W*',bigString)
    return [tok.lower() for tok in listOfTokens if len(tok)>2]


# 3)分析数据: 检查词条确保解析的正确性
# 4)训练算法: 使用我们之前建立的 trainNB0() 函数
# 5)测试算法: 观察错误率,确保分类器可用。可以修改切分程序,以降低错误率,提高分类结果
# RSS源分类器及高频词去除函数
def calcMostFreq(vocabList,fullText):
    import operator
    freqDict={}
    for token in vocabList:  #遍历词汇表中的每个词
        freqDict[token]=fullText.count(token)  #统计每个词在文本中出现的次数
    sortedFreq=sorted(freqDict.items(),key=operator.itemgetter(1),reverse=True)  #根据每个词出现的次数从高到底对字典进行排序
    return sortedFreq[:30]   #返回出现次数最高的30个单词
def localWords(feed1,feed0):
    import feedparser
    docList=[];classList=[];fullText=[]
    minLen=min(len(feed1['entries']),len(feed0['entries']))
    for i in range(minLen):
        wordList=textParse(feed1['entries'][i]['summary'])   #每次访问一条RSS源
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList=textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList=createVocabList(docList)
    top30Words=calcMostFreq(vocabList,fullText)
    for pairW in top30Words:
        if pairW[0] in vocabList:vocabList.remove(pairW[0])    #去掉出现次数最高的那些词
    trainingSet=range(2*minLen);testSet=[]
    for i in range(20):
        randIndex=int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[];trainClasses=[]
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2VecMN(vocabList,docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam=trainNB0(array(trainMat),array(trainClasses))
    errorCount=0
    for docIndex in testSet:
        wordVector=bagOfWords2VecMN(vocabList,docList[docIndex])
        if classifyNB(array(wordVector),p0V,p1V,pSpam)!=classList[docIndex]:
            errorCount+=1
    print('the error rate is:',float(errorCount)/len(testSet))
    return vocabList,p0V,p1V

# 6)使用算法: 构建一个完整的程序,封装所有内容。给定两个 RSS 源,改程序会显示最常用的公共词
# 函数 localWords() 使用了两个 RSS 源作为参数,RSS 源要在函数外导入,这样做的原因是 RSS 源会随时间而改变,重新加载 RSS 源就会得到新的数据
# 最具表征性的词汇显示函数
def getTopWords(ny,sf):
    import operator
    vocabList,p0V,p1V=localWords(ny,sf)
    topNY=[];topSF=[]
    for i in range(len(p0V)):
        if p0V[i]>-6.0:
            topSF.append((vocabList[i],p0V[i]))
        if p1V[i]>-6.0:
            topNY.append((vocabList[i],p1V[i]))
    sortedSF=sorted(topSF,key=lambda pair:pair[1],reverse=True)
    print("SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**")
    for item in sortedSF:
        print(item[0])
    sortedNY=sorted(topNY,key=lambda pair:pair[1],reverse=True)
    print("NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**")
    for item in sortedNY:
        print(item[0])

备注:

参考资料:
《机器学习实战》
https://github.com/apachecn/AiLearning/blob/master/docs/ml/4.%E6%9C%B4%E7%B4%A0%E8%B4%9D%E5%8F%B6%E6%96%AF.md

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值